Have a personal or library account? Click to login
Genetic Diversity Assessment of Promising Walnut (Juglans regia L.) Genotypes Using RAPD, ISSR, and iPBS Markers Cover

Genetic Diversity Assessment of Promising Walnut (Juglans regia L.) Genotypes Using RAPD, ISSR, and iPBS Markers

Open Access
|Nov 2025

References

  1. Adhikari, S., Saha, S., Biswas, A., Rana, T. S., Bandyopadhyay, T. K., Ghosh, P. 2017: Application of molecular markers in plant genome analysis: a review. The Nucleus 60 (3): 283–297.
  2. Akça, Y. 2016: Ceviz Yetistiriciliği (Walnut Production). Ankara: Anıt Matbaası, 9th Ed.
  3. Amom, T., Tikendra, L., Apana, N., Goutam, M., Sonia, P., Koijam, A. S., et al. 2020: Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of north-East India. Phytochemistry 174: 112330. https://doi.org/10.1016/j.phytochem.2020.112330.
  4. Andeden, E. E., Baloch, F. S., Derya, M., Kilian, B., Özkan, H. 2013: iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species. Journal of Plant Biochemistry and Biotechnology 22: 453–466. https://doi.org/10.1007/s13562-012-0150-5.
  5. Atia, M. A. M., El-Moneim, D. A., Abdelmoneim, T. K., Reda, E. H., Shakour, Z. T. A., El-Halawany, A. M., Hegazy, M. E. F. 2021: Evaluation of genetic variability and relatedness among eight Centaurea species through CAAT-box derived polymorphism (CBDP) and start codon targeted polymorphism (SCoT) markers. Biotechnology & Biotechnological Equipment 35 (1): 1230–1237.
  6. Badenes, M.L., Parfitt, D.E. 1998: Phylogeny of the genus pistacia as determined from analysis of the chloroplast genome. FAO Nucis-Newsletter 7: 25–26.
  7. Biabani, A., Rafii, M.Y., Saleh, G.B., Latif, M.A. 2013: Inter– and intra–population genetic variations in Jatropha curcas populations revealed by inter-simple sequence repeat molecular markers. Maydica 58: 111–118.
  8. Christopoulos, M. V., Rouskas, D., Tsantili, E., Bebeli, P. J. 2010: Germplasm diversity and genetic relationships among walnut (Juglans regia L.) cultivars and Greek local selections revealed by Inter-Simple Sequence Repeat (ISSR) markers. Scientia Horticulturae 125 (4): 584–592. https://doi.org/10.1016/j.scienta.2010.04.028.
  9. Doğan, Y., Kafkas, S., Sütyemez, M., Akça, Y., Türemiş, N. 2014: Assessment and characterization of genetic relationships of walnut (Juglans regia L.) genotypes by three types of molecular markers. Scientia Horticulturae 168: 81–87. https://doi.org/10.1016/j.scienta.2014.01.008.
  10. Feschotte, C., Wessler, S. R. 2002: Mariner-like transposases are widespread and diverse in flowering plants. Proceedings of the National Academy of Sciences 99: 280–285. https://doi.org/10.1073/pnas.012611299.
  11. Filiz, E., Koc, İ. 2011: Bitki biyoteknolojisinde moleküler markörler. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 2011 (2): 20–29.
  12. Ganesh Ram, S., Parthiban, K. T., Senthil Kumar, R., Thiruvengadam, V., Paramathma, M. 2008: Genetic diversity among Jatropha species as revealed by RAPD markers. Genetic Resources and Crop Evolution 55: 803–809. https://doi.org/10.1007/s10722-007-9285-3.
  13. Garcia-Mas, J., Oliver, M., Gomez-Paniagua, H., De Vicente, M. C. 2000: Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theoretical and Applied Genetics 101: 860–864. https://doi.org/10.1007/s001220051553.
  14. Godwin, I. D., Aitken, E. A., Smith, L. W. 1997: Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18 (9): 1524–1528.
  15. Güler, E., Karadeniz, T., Özer, G., Uysal, T. 2024: Diversity and association mapping assessment of an untouched native grapevine genetic resource by iPBS retrotransposon markers. Genetic Resources and Crop Evolution 71 (2): 679–690.
  16. İpek, M., Arıkan, Ş., Pırlak, M., Eşitken, A. 2019: Phenological, morphological and molecular characterization of some promising walnut (Juglans regia L.) genotypes in Konya. Erwerbs-Obstbau 61: 149–156. https://doi.org/10.1007/s10341-018-0391-7.
  17. Iqbal, M. J., Aziz, N., Saeed, N. A., Zafar, Y., Malik, K. A. 1997: Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theoretical and Applied Genetics 94: 139–144. https://doi.org/10.1007/s001220050389.
  18. Itoo, H., Shah, R. A., Qurat, S., Jeelani, A., Khursheed, S., Bhat, Z. A., Padder, B. A. 2023: Genome-wide characterization and development of SSR markers for genetic diversity analysis in northwestern Himalayas Walnut (Juglans regia L.). 3 Biotech 13(5): 136. https://doi.org/10.1007/s13205-023-03473-5.
  19. Kalendar, R., Antonius, K., Smýkal, P., Schulman, A. H. 2010: iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics 121 (8): 1419–1430. https://doi.org/10.1007/s00122-010-1398-2.
  20. Kalendar, R., Schulman, A. H. 2006: IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols 1(5): 2478–2484. https://doi.org/10.1038/nprot.2006.377.
  21. Karp, A., Edwards, K. J., Bruford, M., Funk, S., Vosman, B., Morgante, M., Hewitt, G. M. 1997: Molecular technologies for biodiversity evaluation: opportunities and challenges. Nature biotechnology 15(7): 625–628.
  22. Li, G., Quiros, C. F. 2000: Use of amplified fragment length polymorphism markers for celery cultivar identification. HortScience 35 (4): 726–728.
  23. Lynch, M. M. B. G., Milligan, B. G. 1994: Analysis of population genetic structure with RAPD markers. Molecular ecology 3 (2): 91–99.
  24. Muradoğlu, F. 2005: Selection of promising genotypes in native walnut (Juglans regia L) populations of Hakkari and Ahlat (Bitlis) district, and genetic diversity. Türkiye, Van, Van Yüzüncü Yıl University, PhD Thesis.
  25. Özcan, A., Sütyemez, M., Nar, A., Yıldırım, E., Süslüoglu, Z. 2020: Similarities of leafing and leaf fall date of ‘Pedro’walnut variety with its progenies in breeding programs. Physiology and Molecular Biology of Plants 26 (10): 1945–1959.
  26. Peakall, R. O. D., Smouse, P. E. 2006: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular ecology notes 6 (1): 288–295.
  27. Pop, I. F., Vicol, A. C., Botu, M., Raica, P. A., Vahdati, K., Pamfil, D. 2013: Relationships of walnut cultivars in a germplasm collection: comparative analysis of phenotypic and molecular data. Scientia Horticulturae 153: 124–135. https://doi.org/10.1016/j.scienta.2013.01.023.
  28. Prevost, A., Wilkinson, M. J. 1999: A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and applied Genetics 98: 107–112.
  29. Pritchard, J. K., Stephens, M., Donnelly, P. 2000: Inference of population structure using multilocus genotype data. Genetics 155 (2): 945–959.
  30. Rohlf, F. J. 2000: Statistical power comparisons among alternative morphometric methods. American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists 111 (4): 463–478.
  31. Roldan-Ruiz, I., Dendauw, J., Van Bockstaele, E., Depicker, A., De Loose, M. A. F. L. P. 2000: AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular breeding 6: 125–134.
  32. Ruiz-Garcia, L., Lopez-Ortega, G., Denia, A. F., Tomas, D. F. 2011: Identification of a walnut (Juglans regia L.) germplasm collection and evaluation of their genetic variability by microsatellite markers. Spanish Journal of Agricultural Research 9(1): 179–192. https://doi.org/10.5424/sjar/20110901-191-10.
  33. Schulman, A. H., Flavell, A. J., Ellis, T. H. N. 2004: The application of LTR retrotransposons as molecular markers in plants. Methods in Molecular Biology 260: 145–175. https://doi.org/10.1385/1-59259-756-1:145.
  34. Shah, U. N., Mir, J. I., Ahmed, N., Fazili, K. M. 2019: Genetic Diversity Analysis of Walnut (Juglans regia L.) from Kashmir Valley Using RAPD and ISSR Markers. Agrotechnology 8 (1): 185. https://doi.org/10.35248/2168-9881.19.8.185.
  35. Souframanien, J., Gopalakrishna, T. 2004: A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theoretical and Applied Genetics 109: 1687–1693. https://doi.org/10.1007/s00122-004-1786-8.
  36. Vahdati, K., Arab, M. M., Sarikhani, S., Sadat-Hosseini, M., Leslie, C. A., Brown, P. J. 2019: Advances in Persian walnut (Juglans regia L.) breeding strategies. Advances in Plant Breeding Strategies: Nut and Beverage Crops (4): 401–472. https://doi.org/10.1007/978-3-030-23112-5_12.
  37. Virk, P. S., Zhu, J., Newbury, H. J., Bryan, G. J., Jackson, M. T., Ford-Lloyd, B. V. 2000: Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112: 275–284.
  38. Wang, H. F., Zong, X. X., Guan, J. P., Yang, T., Sun, X. L., Ma, Y., Redden, R. 2012: Genetic diversity and relationship of global faba bean (Vicia faba L.) germplasm revealed by ISSR markers. Theoretical and Applied Genetics 124: 789–797. https://doi.org/10.1007/s00122-011-1747-2.
  39. Welsh, J., McClelland, M. 1990: Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18 (24): 7213–7218. https://doi.org/10.1093/nar/18.24.7213.
  40. Yaldız, G., Camlica, M., Nadeem, M. A., Nawaz, M. A., Baloch, F. S. 2018: Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turkish Journal of Agriculture and Forestry 42 (3): 154–164. https://doi.org/10.3906/tar-1708-87.
  41. Yıldız, M., Koçak, M., Baloch, F. S. 2015: Genetic bottlenecks in Turkish okra germplasm and utility of iPBS retrotransposon markers for genetic diversity assessment. Genetics and Molecular Research 14 (3): 10588–10602. https://doi.org/10.4238/2015.September.9.2.
DOI: https://doi.org/10.2478/mittklbg-2025-0008 | Journal eISSN: 3061-063X | Journal ISSN: 3061-0621
Language: English
Page range: 115 - 130
Submitted on: May 9, 2025
|
Published on: Nov 20, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 İbrahim Başak, Ferhad Muradoğlu, Göksel Özer, Emrah Güler, published by High School and Federal Office of Viticulture and Pomology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.