Have a personal or library account? Click to login
Spin-Off VS. Spin-Out: A Dual-Category Approach and Minimal Descriptors for Comparable Research and Policy Cover

Spin-Off VS. Spin-Out: A Dual-Category Approach and Minimal Descriptors for Comparable Research and Policy

Open Access
|Dec 2025

References

  1. Algieri, B., Aquino, A., & Succurro, M. (2013). Technology transfer offices and academic spin-off creation: the case of Italy. Journal of Technology Transfer, 38(4), 382–400. https://doi.org/10.1007/s10961-011-9241-8
  2. Audretsch, D. B. (2014). From the entrepreneurial university to the university for the entrepreneurial society. Journal of Technology Transfer, 39(3), 313–321. https://doi.org/10.1007/s10961-012-9288-1
  3. AUTM. (2021–2024). AUTM U.S. Licensing Activity Survey (FY2021-FY2023) – definitions and instructions (incl. “startup company”). Association of University Technology Managers. https://autm.net
  4. Benneworth, P., & Charles, D. (2005). University spin-off policies and economic development in less successful regions. European Planning Studies, 13(4), 537–557. https://doi.org/10.1080/09654310500107175
  5. Berman, E. P. (2008). Why did universities start patenting? Institution-building and the road to the Bayh–Dole Act. Social Studies of Science, 38(6), 835–871. https://doi.org/10.1177/0306312708098605
  6. Bigliardi, B., Galati, F., & Verbano, C. (2013). Evaluating performance of university spin-off companies: Lessons from Italy. Journal of Technology Management & Innovation, 8(2), 178–188. https://doi.org/10.4067/S0718-27242013000200015
  7. Bray, M. J., & Lee, J. N. (2000). University revenues from technology transfer: Licensing fees vs. equity positionsshares. Journal of Business Venturing, 15(5-6), 385–402. https://doi.org/10.1016/S0883-9026(98) 00034-2
  8. Caputo, A., Charles, D., & Fiorentino, R. (2022). University spin-offs: entrepreneurship, growth and regional development. Studies in Higher Education, 47(10), 1999–2006. https://doi.org/10.1080/03075079. 2022.2122655
  9. Cerver Romero, E., Ferreira, J. J., & Fernandes, C. I. (2021). The multiple faces of the entrepreneurial university: A review of the prevailing theoretical approaches. Journal of Technology Transfer, 46(4), 1173-1195. https://doi.org/10.1007/s10961-020-09809-7
  10. Clarysse, B., & Moray, N. (2004). A process study of entrepreneurial team formation: The case of a research-based spin-off. Journal of Business Venturing, 19(1), 55–79. https://doi.org/10.1016/S0883-9026(02)00113-1
  11. Clarysse, B., Tartari, V., & Salter, A. (2011). The impact of entrepreneurial capacity, experience and organizational support on academic entrepreneurship. Research Policy, 40(8), 1084–1093. https://doi.org/10.1016/j.respol.2011.05.010
  12. Coates Ulrichsen, T., Roupakia, Z., & Kelleher, L. (2022). Busting myths and moving forward: the reality of UK university approaches to taking equity in spinouts. Policy Evidence Unit for University Commercialisation technical report. University of Cambridge. https://doi.org/10.17863/CAM.118883
  13. Council of the European Union. (2022). Council Recommendation on the guiding principles for knowledge valorisation (OJ C 493, 9.12.2022, pp. 1–12). EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32022H2415
  14. Dabić, M., Vlačić, B., Guerrero, M., & Daim, T. U. (2022). University spin-offs: the past, the present, and the future. Studies in Higher Education, 47(10), 2007–2021. https://doi.org/10.1080/03075079.2022.2122656
  15. Ensley, M. D., & Hmieleski, K. M. (2005). A comparative study of new venture top management team composition, dynamics and performance between university-based and independent start-ups. Research Policy, 34(7), 1091–1105. https://doi.org/10.1016/j.respol.2005.05.008
  16. Etzkowitz, H., & Leydesdorff, L. (1997). Universities and the global knowledge economy: A triple helix of university-industry relations. Cassell.
  17. European Commission: Directorate-General for Research and Innovation. (2023). Code of practice on standardisation in the European Research Area: Commission recommendation. Publications Office of the European Union. https://data.europa.eu/doi/10.2777/371128
  18. Gilson, R. J., & Schizer, D. M. (2003). Understanding Venture Capital Structure: A Tax Explanation for Convertible Preferred Stock. Harvard Law Review, 116(3), 874–916. https://doi.org/10.2307/1342584
  19. Goethner, M., Obschonka, M., Silbereisen, R. K., & Cantner, U. (2012). Scientists’ transition to academic entrepreneurship: Economic and psychological determinants. Journal of economic psychology, 33(3), 628–641. https://doi.org/10.1016/j.joep.2011.12.002
  20. Guerrero, M., Fayolle, A., Di Guardo, M. C., & Urbano, D. (2024). Re-viewing the entrepreneurial university: strategic challenges and theory building opportunities. Small Business Economics, 63, 527–548. https://doi.org/10.1007/s11187-023-00858-z
  21. Heirman, A., & Clarysse, B. (2004). How and why do research-based start-ups differ at founding? A resource-based configurational perspective. Journal of Technology Transfer, 29(3-4), 247–268. https://doi.org/10.1023/B:JOTT.0000034122.88495.0d
  22. Kaplan, S. N., & Strömberg, P. (2003). Financial contracting theory meets the real world: An empirical analysis of venture capital contracts. Review of Economic Studies, 70(2), 281–315. https://doi.org/10.1111/1467-937X.00245
  23. Konopka-Cupiał, G. (2020). Centra transferu technologii i spółki celowe jako narzędzia komercjalizacji wyników badań naukowych w polskich uczelniach [Technology transfer centres and special purpose vehicles as tools for commercialisation of scientific research at Polish universities]. Studia BAS, 1(60), 75–86. https://doi.org/10.31268/StudiaBAS.2020.05 (in Polish)
  24. Landes, D. S. (1969, 2003). The unbound Prometheus: Technological change and industrial development in Western Europe from 1750 to the present. Cambridge University Press.
  25. Lockett, A., & Wright, M. (2005). Resources, capabilities, risk capital and the creation of university spin-out companies. Research Policy, 34(7), 1043–1057. https://doi.org/10.1016/j.respol.2005.05.006
  26. McAdam, M., & McAdam, R. (2008). High tech start-ups in University Science Park incubators: The relationship between the start-up’s lifecycle progression and use of the incubator’s resources. Technovation, 28(5), 277–290. https://doi.org/10.1016/j.technovation.2007.07.012
  27. Mian, S. A. (1997). Assessing and managing the university technology business incubator: An integrative framework. Journal of Business Venturing, 12(4), 251–285. https://doi.org/10.1016/S0883-9026(96)00063-8
  28. Miranda, F. J., Chamorro, A., & Rubio, S. (2018). Re-thinking university spin-off: A critical literature review and a research agenda. Journal of Technology Transfer, 43(4), 1007–1038. https://doi.org/10.1007/s10961-017-9647-z
  29. Mokyr, J. (2002). The Gifts of Athena: Historical Origins of the Knowledge Economy. Princeton University Press. https://doi.org/10.1515/9781400829439
  30. Mowery, D. C. (2005). The Bayh–Dole act and high-technology entrepreneurship in US Universities: Chicken, egg, or something else? In: Gary D. Libecap (Ed). University Entrepreneurship and Technology Transfer (pp. 39–68). Emerald. https://doi.org/10.1016/S1048-4736(05)16002-0
  31. Mustar, P., Renault, M., Colombo, M. G., Piva, E., Fontes, M., Lockett, A., … & Moray, N. (2006). Conceptualising the heterogeneity of research-based spin-offs: A multi-dimensional taxonomy. Research Policy, 35(2), 289–308. https://doi.org/10.1016/j.respol.2005.11.001
  32. Nerkar, A., & Shane, S. (2003). When do start-ups that exploit patented academic knowledge survive?. International Journal of Industrial Organization, 21(9), 1391–1410. https://doi.org/10.1016/S0167-7187(03) 00088-2
  33. Nicolaou, N., & Birley, S. (2003). Academic networks in a trichotomous categorisation of university spinouts. Journal of Business Venturing, 18(3), 333–359. https://doi.org/10.1016/S0883-9026(02)00118-0
  34. O’Reilly, N. M., Robbins, P., & Scanlan, J. (2018). Dynamic capabilities and the entrepreneurial university: a perspective on the knowledge transfer capabilities of universities. Journal of Small Business & Entrepreneurship, 31(3), 243–263. https://doi.org/10.1080/08276331.2018.1490510
  35. O’Shea, R. P., Chugh, H., & Allen, T. J. (2008). Determinants and consequences of university spinoff activity: A conceptual framework. Journal of Technology Transfer, 33(6), 653–666. https://doi.org/10.1007/s10961-007-9060-0
  36. OECD. (2003). OECD Science, Technology and Industry Scoreboard 2003. OECD Publishing. https://doi.org/10.1787/sti_scoreboard-2003-en
  37. OECD/Eurostat. (2018). Oslo Manual 2018: Guidelines for Collecting, Reporting and Using Data on Innovation (4th ed.). OECD Publishing. https://doi.org/10.1787/9789264304604-en
  38. Ortín-Ángel, P., & Vendrell-Herrero, F. (2014). University spin-offs vs. other NTBFs: Total factor productivity differences at outset and evolution. Technovation, 34(2), 101–112. https://doi.org/10.1016/j.technovation.2013.09.006
  39. Perkmann, M., Salandra, R., Tartari, V., McKelvey, M., & Hughes, A. (2021). Academic engagement: A review of the literature 2011–2019. Research Policy, 50(1), 104114. https://doi.org/10.1016/j.respol.2020.104114
  40. Perkmann, M., Tartari, V., McKelvey, M., Autio, E., Broström, A., D’Este, P., … & Sobrero, M. (2013). Academic engagement and commercialisation: A review of the literature on university-industry relations. Research Policy, 42(2), 423–442. https://doi.org/10.1016/j.respol.2012.09.007
  41. Pinheiro, M. L., Pinho, J. C., & Lucas, C. (2015). The outset of UI R & D relationships: the specific case of biological sciences. European Journal of Innovation Management, 18(3), 282–306. https://doi.org/10.1108/EJIM-08-2014-0085
  42. Pirnay, F., Surlemont, B., & Nlemvo, F. (2003). Toward a typology of university spin-offs. Small Business Economics, 21(4), 355–369. https://doi.org/10.1023/A:1026167105153
  43. Polish Law on Higher Education and Science. (2018, July 20). Prawo o szkolnictwie wyższym i nauce. (2018, July 20). Dziennik Ustaw, 2018, item 1668 (consolidated text for 2025) https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20180001668/U/D20181668Lj.pdf (in Polish)
  44. Rappert, B., Webster, A., & Charles, D. (1999). Making sense of diversity and reluctance: academic-industrial relations and intellectual property. Research Policy, 28(8), 873–890. https://doi.org/10.1016/S0048-7333(99)00028-1
  45. Rodríguez-Gulías, M. J., Rodeiro-Pazos, D., & Fernández-López, S. (2016). The Regional Effect on the Innovative Performance of University Spin-Offs: a Multilevel Approach. Journal of Knowledge Economy, 7(4), 869–889. https://doi.org/10.1007/s13132-015-0287-y
  46. Shane, S. (2004). Academic entrepreneurship: University spinoffs and wealth creation. Edward Elgar Publishing. https://doi.org/10.4337/9781843769828
  47. Smith, A. (1776). An inquiry into the nature and causes of the wealth of nations: Volume One. Printed for W. Strahan; and T. Cadell.
  48. Soete, L., & Freeman, C. (1997). The Economics of Industrial Innovation (1st ed.). Routledge. https://doi.org/10.4324/9780203357637
  49. Stevens, A. J. (2004). The enactment of Bayh–Dole. The Journal of Technology Transfer, 29(1), 93–99. https://doi.org/10.1023/B:JOTT.0000011183.40867.52
  50. Tracey, I., & Williamson, A. (2023). Independent review of university spin-out companies: Final report and recommendations. UK Department for Science, Innovation & Technology. https://www.gov.uk/government/publications/independent-review-of-university-spin-out-companies
  51. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
  52. Walter, A., Auer, M., & Ritter, T. (2006). The impact of network capabilities and entrepreneurial orientation on university spin-off performance. Journal of Business Venturing, 21(4), 541–567. https://doi.org/10.1016/j.jbusvent.2005.02.005
  53. Atsmon, Y., Baroudy, K., Jain, P., Kishore, S., McCarthy, B., Nair, S., & Saleh, T. (2021). Tipping the scales in AI: How leaders capture exponential returns. McKinsey & Company Report.
  54. Barnett, T., Pearson, A. W., Pearson, R., & Kellermanns, F. W. (2015). Five-factor model personality traits as predictors of perceived and actual usage of technology. European Journal of Information Systems, 24(4), 374–390.
  55. Bedué, P., & Fritzsche, A. (2022). Can we trust AI? An empirical investigation of trust requirements and guide to successful AI adoption. Journal of Enterprise Information Management, 35(2), 530–549.
  56. Blut, M., & Wang, C. (2020). Technology readiness: A meta-analysis of conceptualizations of the construct and its impact on technology use. Journal of the Academy of Marketing Science, 48(4), 649–669.
  57. Booyse, D., & Scheepers, C. B. (2024). Barriers to adopting automated organisational decision-making through the use of artificial intelligence. Management Research Review, 47(1), 64–85.
  58. Chugh, R., Turnbull, D., Morshed, A., Sabrina, F., Azad, S., Md Mamunur, R., & Subramani, S. (2025). The promise and pitfalls: A literature review of generative artificial intelligence as a learning assistant in ICT education. Computer Applications in Engineering Education, 33(2), e70002.
  59. Daly, S. J., Wiewiora, A., & Hearn, G. (2025). Shifting attitudes and trust in AI: Influences on organizational AI adoption. Technological Forecasting and Social Change, 215, 124108.
  60. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.
    Davis F. D. Bagozzi R. P. Warshaw P. R. ( 1989 ). User acceptance of computer technology: A comparison of two theoretical models . Management Science , 35 ( 8 ), 982 1003 .
  61. Dhagarra, D., Goswami, M., & Kumar, G. (2020). Impact of trust and privacy concerns on technology acceptance in healthcare: An Indian perspective. International Journal of Medical Informatics, 141, 104164.
  62. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 102–147.
  63. Feuerriegel, S., Hartmann, J., Janiesch, C., Zschech, P., Heinzl, A., & Hund, A. (2024). Generative AI. Business & Information Systems Engineering, 66(2), 111–126.
  64. Fuglsang, S. (2024). What if some people just do not like science? How personality traits relate to attitudes toward science and technology. Public Understanding of Science, 33(5), 623–633.
  65. Gamma, F., & Magistretti, S. (2025). Artificial intelligence in innovation management: A review of innovation capabilities and a taxonomy of AI applications. Journal of Product Innovation Management, 42(1), 76–111.
  66. Gramlich, J. (2025). Q&A: Why and how we compared the public’s views of artificial intelligence with those of AI experts. Pew Research Center.
  67. Grassini, S., & Koivisto, M. (2024). Understanding how personality traits, experiences, and attitudes shape negative bias toward AI-generated artworks. Scientific Reports, 14(1), 4113.
  68. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage.
  69. Hornung, O., & Smolnik, S. (2021). AI invading the workplace: Negative emotions towards the organizational use of personal virtual assistants. Electronic Markets, 32(1), 123–138.
  70. Hubert, M., Blut, M., Brock, V., Zhang, R. W., Koch, V., & Riedl, R. (2019). The influence of acceptance and adoption drivers on smart home usage. European Journal of Marketing, 53(6), 1073–1098.
  71. IBM Institute for Business Value. (2024). The ingenuity of generative AI: Unlock productivity and innovation at scale. IBM.
  72. Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1–12.
  73. Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis. Prentice Hall.
  74. Kaya, F., Aydin, F., Schepman, A., Rodway, P., Yetişensoy, O., & Demir Kaya, M. (2024). The roles of personality traits, AI anxiety, and demographic factors in attitudes toward artificial intelligence. International Journal of Human–Computer Interaction, 40(2), 497–514.
  75. Kassa, B. Y., & Worku, E. K. (2025). The impact of artificial intelligence on organizational performance: The mediating role of employee productivity. Journal of Open Innovation: Technology, Market, and Complexity, 11, 100474.
  76. Keeter, S. (2019). Growing and improving Pew Research Center’s American Trends Panel. Pew Research Center.
  77. Kelly, J. (2023). Goldman Sachs predicts 300 million jobs will be lost or degraded by artificial intelligence. Forbes.
  78. Kim, B. J., Kim, M. J., & Lee, J. (2025). The dark side of artificial intelligence adoption: Linking artificial intelligence adoption to employee depression via psychological safety and ethical leadership. Humanities and Social Sciences Communications, 12, 704.
  79. Liu, Y., Sheng, F., & Liu, R. (2025). Generative AI adoption and employee outcomes: A conservation of resources perspective on job crafting, career commitment, and the moderating role of liking of AI. Humanities and Social Sciences Communications, 12, 1376.
  80. Mariani, M., & Dwivedi, Y. K. (2024). Generative artificial intelligence in innovation management: A preview of future research developments. Journal of Business Research, 175, 114542.
  81. Mariani, M. M., Perez-Vega, R., & Wirtz, J. (2022). AI in marketing, consumer research and psychology: A systematic literature review and research agenda. Psychology and Marketing, 39(4), 755–776.
  82. Meuter, M. L., Ostrom, A. L., Bitner, M. J., & Roundtree, R. (2003). The influence of technology anxiety on consumer use experiences with self-service technologies. Journal of Business Research, 56(11), 899–906.
  83. Montag, C., Ali, R., & Davis, K. L. (2025). Affective neuroscience theory and attitudes towards artificial intelligence. AI & Society, 40(1), 167–174.
  84. Montag, C., & Ali, R. (2025). Can we assess attitudes toward AI with single items? Associations with existing attitudes toward AI measures and trust in ChatGPT. Journal of Technology in Behavioral Science, 1–11.
  85. Monteverde, G., Cammarota, A., Serafini, L., & Quadri, M. (2025). Are we human or are we voice assistants? Revealing the interplay between anthropomorphism and consumer concerns. Journal of Marketing Management, 41(1–2), 1–25.
  86. Mousavizadeh, M., Kim, D. J., & Chen, R. (2016). Effects of assurance mechanisms and consumer concerns on online purchase decisions: An empirical study. Decision Support Systems, 92, 79–90.
  87. Morsi, S. (2023). Artificial intelligence in electronic commerce: Investigating the customers’ acceptance of using chatbots. Electronic Commerce Research, 13(3), 156–176.
  88. Organization for Economic Cooperation and Development (OECD). (2019). OECD AI principles overview. OECD.
  89. Ozsevim, I. (2023). Consumer concerns: AI privacy, transparency and emotionality. AI Magazine.
  90. Pandy, G., Pugazhenthi, V. J., & Murugan, A. (2025). Generative AI: Transforming the landscape of creativity and automation. International Journal of Computer Applications, 186(63), 7–13.
  91. Parasuraman, A., & Colby, C. L. (2015). An updated and streamlined technology readiness index: TRI 2.0. Journal of Service Research, 18(1), 59–74.
  92. Park, S. S., Tung, C. D., & Lee, H. (2021). The adoption of AI service robots: A comparison between credence and experience service settings. Psychology & Marketing, 38(4), 691–703.
  93. Park, J., & Woo, S. E. (2022). Who likes artificial intelligence? Personality predictors of attitudes toward artificial intelligence. Journal of Psychology, 156(1), 68–94.
  94. Păvăloaia, V.-D., & Necula, S.-C. (2023). Artificial intelligence as a disruptive technology – A systematic literature review. Electronics, 12(5), 1102.
  95. Pew Research Center. (2021). American Trends Panel wave 99 [Data files and questionnaire].
  96. Qualtrics. (2023). Beyond chatbots, majority of consumers are open to AI in legal, medical or financial matters. Qualtrics News.
  97. Querci, I., Barbarossa, C., Romani, S., & Ricotta, F. (2022). Explaining how algorithms work reduces consumers’ concerns regarding the collection of personal data and promotes AI technology adoption. Psychology & Marketing, 39(10), 1888–1901.
  98. Rahimi, B., Nadri, H., Afshar, H. L., & Timpka, T. (2018). A systematic review of the technology acceptance model in health informatics. Applied Clinical Informatics, 9(3), 604–634.
  99. Rainie, L., Anderson, J., & Vogels, E. A. (2021). Experts doubt ethical AI design will be broadly adopted as the norm within the next decade. Pew Research Center.
  100. Rainie, L., Funk, C., Anderson, M., & Tyson, A. (2022). AI and human enhancement: Americans’ openness is tempered by a range of concerns. Pew Research Center.
  101. Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210.
  102. Rana, N. P., Pillai, R., Sivathanu, B., & Malik, N. (2024). Assessing the nexus of generative AI adoption, ethical considerations and organizational performance. Technovation, 135, 103064.
  103. Rashidi, H. H., Pantanowitz, J., Hanna, M. G., Tafti, A. P., Sanghani, P., Buchinsky, A., & Pantanowitz, L. (2025). Introduction to artificial intelligence and machine learning in pathology and medicine: Generative and nongenerative artificial intelligence basics. Modern Pathology, 38(4), 100688.
  104. Reddy, P., Ch, K., Sharma, K., Sharma, B., & Sharma, S. (2025). Evolution of generative artificial intelligence: A review of the developed and developing. Engineered Science, 35, 1529.
  105. Romeo, E., & Lacko, J. (2025). Adoption and integration of AI in organizations: A systematic review of challenges and drivers towards future directions of research. Kybernetes, Advance online publication.
  106. Shell, M. A., & Buell, R. W. (2022). Mitigating the negative effects of consumer anxiety through access to human contact (Harvard Business School Working Paper No. 19-089). Harvard Business School.
  107. Schiavo, G., Businaro, S., & Zancanaro, M. (2024). Comprehension, apprehension, and acceptance: Understanding the influence of literacy and anxiety on acceptance of artificial intelligence. Technology in Society, 77, 102537.
  108. Sidoti, O., Park, E., & Gottfried, J. (2025). About a quarter of U.S. teens have used ChatGPT for schoolwork – double the share in 2023. Pew Research Center.
  109. Siegrist, M., & Hartmann, C. (2020). Consumer acceptance of novel food technologies. Nature Food, 1(6), 343–350.
  110. Skoumpopoulou, D., Wong, A., Ng, P., & Lo, M. F. (2018). Factors that affect the acceptance of new technologies in the workplace: A cross case analysis between two universities. International Journal of Education and Development Using Information and Communication Technology, 14(3), 209–222.
  111. Smith, G. K. (2025). Strategic integration of generative AI: Opportunities, challenges, and organizational impacts. Law, Economics and Society, 1(1), 156–179.
  112. Special Committee on Artificial Intelligence in a Digital Age (AIDA). (2022). Report on artificial intelligence in a digital age. European Parliament.
  113. Stein, J. P., Messingschlager, T., Gnambs, T., Hutmacher, F., & Appel, M. (2024). Attitudes towards AI: Measurement and associations with personality. Scientific Reports, 14(1), 2909.
  114. Stokel-Walker, C., & Van Noorden, R. (2023). What ChatGPT and generative AI mean for science. Nature, 614(7947), 214–216.
  115. Tamilmani, K., Rana, N. P., Fosso Wamba, S., & Dwivedi, R. (2021). The extended unified theory of acceptance and use of technology (UTAUT2): A systematic literature review and theory evaluation. International Journal of Information Management, 57, 102269.
  116. United States Census Bureau. (2023). 2023 population QuickFacts.
  117. Wang, C., Li, X., Liang, Z., Sheng, Y., Zhao, Q., & Chen, S. (2025). The roles of social perception and AI anxiety in individuals’ attitudes toward ChatGPT in education. International Journal of Human–Computer Interaction, 41(9), 5713–5730.
  118. Wang, G., Obrenovic, B., Gu, X., & Godinic, D. (2025). Fear of the new technology: Investigating the factors that influence individual attitudes toward generative Artificial Intelligence (AI). Current Psychology, 44, 8050–8067.
  119. White House. (2022). The impact of artificial intelligence on the future of work forces in the European Union and the United States of America.
  120. Wilson, H. J., & Daugherty, P. R. (2018). Collaborative intelligence: Humans and AI are joining forces. Harvard Business Review.
  121. Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85–102.
  122. Youn, S., & Lee, K.-H. (2019). Proposing value based technology acceptance model: Testing on paid mobile media service. Fashion and Textiles, 6(13), 1–16.
  123. Yuan, C., Zhang, C., & Wang, S. (2022). Social anxiety as a moderator in consumer willingness to accept AI assistants based on utilitarian and hedonic values. Journal of Retailing and Consumer Services, 68, 103101.
DOI: https://doi.org/10.2478/minib-2025-0010 | Journal eISSN: 2353-8414 | Journal ISSN: 2353-8503
Language: English
Page range: 86 - 112
Submitted on: Sep 10, 2025
|
Accepted on: Dec 4, 2025
|
Published on: Dec 29, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Piotr Paluch, Agnieszka Skala-Gosk, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.