EU, Regulation (EU) 2015/2283 of the European Parliament and of the Council, of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 European Union 2011. L 304/18.
Singhal R.S., P.R. Kulkarni, and D. Reg, Handbook of indices of food quality and authenticity. 1997: Woodhead Publishing. https://doi.org/10.1533/9781855736474
Gambuteanu C., D. Borda, and P. Alexe, The effect of freezing and thawing on technological properties of meat. Journal of Agroalimentary Processes and Technologies, 2013. 19(1): p. 88-93.
Leygonie C., T.J. Britz, and L.C. Hoffman, Impact of freezing and thawing on the quality of meat. Meat Science, 2012. 91(2): p. 93-98. https://doi.org/10.1016/j.meatsci.2012.01.013
Egelandsdal B., S.M. Abie, S. Bjarnadottir, et al., Detectability of the degree of freeze damage in meat depends on analytic-tool selection. Meat Science, 2019. 152: p. 8-19. https://doi.org/10.1016/j.meatsci.2019.02.002
Yu X.L., X.B. Li, L. Zhao, et al., Effects of Different Freezing Rates and Thawing Rates on the Manufacturing Properties and Structure of Pork. Journal of Muscle Foods, 2010. 21(2): p. 177-196. https://doi.org/10.1111/j.1745-4573.2009.00175.x
Ragnarsson S.Ö. and J.R. Viðarsson, Overview of available methods for thawing seafood/Lausnir sem standa til boða við uppþíðingu á sjávarfangi. 2017. Available from: https://www.matis.is/media/afrakstur/Skyrsla_0417.pdf[Accessed Dec 2022].
Fernández-Segovia I., A. Fuentes, M. Aliño, et al., Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering, 2012. 113(2), pp.210-216. https://doi.org/10.1016/j.jfoodeng.2012.06.003
Chen T.-H., Y.-P. Zhu, M.-Y. Han, et al., Classification of chicken muscle with different freeze-thaw cycles using impedance and physicochemical properties. Journal of food engineering, 2017. 196: p. 94-100. https://doi.org/10.1016/j.jfoodeng.2016.10.003
Abie S.M., Ø.G. Martinsen, B. Egelandsdal, et al., Feasibility of using electrical impedance spectroscopy for assessing biological cell damage during freezing and thawing. Sensors, 2021. 21(12): p. 4129. https://doi.org/10.3390/s21124129
Martinsen Ø.G., S. Grimnes, and H.P. Schwan, Interface phenomena and dielectric properties of biological tissue. Encyclopedia of Surface and Colloid Science, 2002. 20: p. 2643-2653.
Pliquett F. and U. Pliquett, Stress action on biological tissue and tissue models detected by the Py value. Annals of the New York Academy of Sciences, 1999. 873(1): p. 227-238. https://doi.org/10.1111/j.1749-6632.1999.tb09471.x
Cole K.S., Permeability and impermeability of cell membranes for ions. in Cold Spring Harbor Symposia on Quantitative Biology. 1940. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/SQB.1940.008.01.013
Cox K.W. and R. Heintz, Electrical phase angle as a new method to measure fish condition. Fishery Bulletin- National Oceanic and Atmospheric Administration, 2009. 107(4): p. 477-487.
Schumacher L.L., J. Viégas, G.d.S. Cardoso, et al., Bioelectrical impedance analysis (BIA) in animal production. Revista Mexicana de Ciencias Pecuarias, 2021. 12(2): p. 553-572. https://doi.org/10.22319/rmcp.v12i2.5821
Norman K., N. Stobäus, M. Pirlich, et al., Bioelectrical phase angle and impedance vector analysis-clinical relevance and applicability of impedance parameters. Clinical Nutrition, 2012. 31(6): p. 854-861. https://doi.org/10.1016/j.clnu.2012.05.008
20. Damez J.-L., S. Clerjon, Meat quality assessment using biophysical methods related to meat structure. Meat Science, 2008. 80(1): p. 132-149. https://doi.org/10.1016/j.meatsci.2008.05.039
Oliveira M., G. Gubert, S.S. Roman, et al., Meat quality of chicken breast subjected to different thawing methods. Brazilian Journal of Poultry Science, 2015. 17: p. 165-171. https://doi.org/10.1590/1516-635x1702165-172
Zhao, X., H. Zhuang, S.C. Yoon, et al., Electrical impedance spectroscopy for quality assessment of meat and fish: A review on basic principles, measurement methods, and recent advances. Journal of Food Quality, 2017. 2: p. 1-16. https://doi.org/10.1155/2017/6370739
Cseresnyés I., K. Rajkai, and E. Vozáry, Role of phase angle measurement in electrical impedance spectroscopy. International Agrophysics, 2013. 27(4): p. 377-383. https://doi.org/10.2478/intag-2013-0007
Di Vincenzo O., M. Marra, and L. Scalfi, Bioelectrical impedance phase angle in sport: A systematic review. Journal of the International Society of Sports Nutrition, 2019. 16(1): p. 1-11. https://doi.org/10.1186/s12970-019-0319-2
Kumar S., A. Dutt, S. Hemraj, et al., Phase angle measurement in healthy human subjects through bio-impedance analysis. Iranian Journal of Basic Medical Sciences, 2012. 15(6): p. 1180.
Peres W., D.F. Lento, K. Baluz, et al., Phase angle as a nutritional evaluation tool in all stages of chronic liver disease. Nutricion Hospitalaria, 2012. 27(6): p. 2072-2078.
Tanaka S., K. Ando, K. Kobayashi, et al., Low bioelectrical impedance phase angle is a significant risk factor for frailty. BioMed Research International, 2019. 2019. 6283153. https://doi.org/10.1155/2019/6283153
Damez J.-L., S. Clerjon, S. Abouelkaram, et al., Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing. Journal of Food Engineering, 2008. 85(1): p. 116-122. https://doi.org/10.1016/j.jfoodeng.2007.07.026
Kim Y.H.B., D. Ma, D. Setyabrata, et al., Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Science, 2018. 144: p. 74-90. https://doi.org/10.1016/j.meatsci.2018.04.031
Offer G. and T. Cousins, The mechanism of drip production: formation of two compartments of extracellular space in muscle post mortem. Journal of the Science of Food and Agriculture, 1992. 58(1): p. 107-116. https://doi.org/10.1002/jsfa.2740580118
Huff‐Lonergan E. and S. Lonergan, New frontiers in understanding drip loss in pork: recent insights on the role of postmortem muscle biochemistry. Journal of Animal Breeding and Genetics, 2007. 124: p. 19-26. https://doi.org/10.1111/j.1439-0388.2007.00683.x
Eliášová M., J. Kameník, A. Saláková, et al., The effect of PSE and non-PSE Adductor and Semimembranosus pig muscles on the occurrence of destructured zones in cooked hams. Journal of Food Quality, 2017. 6305051. https://doi.org/10.1155/2017/6305051
Suliga P., S. Abie, B. Egelandsdal, et al., Beyond standard PSE testing: An exploratory study of bioimpedance as a marker for ham defects. Meat Science, 2022: 108980. https://doi.org/10.1016/j.meatsci.2022.108980
Chin A.B., L.P. Garmirian, R. Nie, et al., Optimizing measurement of the electrical anisotropy of muscle. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 2008. 37(5): p. 560-565. https://doi.org/10.1002/mus.20981
Ahmed M.M. and M. Mohamed, Anisotropy in the dielectric properties of skeletal muscle. Egypt Journal of Biophysical and Biomedical Engineering, 2006. 7(1), p. 97-107.
Elwakil A.S. and B. Maundy, Extracting the Cole-Cole impedance model parameters without direct impedance measurement. Electron. Lett, 2010. 46(20), pp.1367-1368. https://doi.org/10.1049/el.2010.1924
Ayllon D., F. Seoane, and R. Gil-Pita, Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements-a comparative study. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. p. 3779-3782. https://doi.org/10.1109/IEMBS.2009.5334494
Yang Y., W. Ni, Q. Sun, et al., Improved Cole parameter extraction based on the least absolute deviation method. Physiological Measurement, 2013. 34(10), p.1239. https://doi.org/10.1088/0967-3334/34/10/1239