References
-
Akter, S., McCarthy, G., Sajib, S., Michael, K., Dwivedi, Y. K., D’Ambra, J., & Shen, K. N. (2021). Algorithmic bias in data-driven innovation in the age of AI. International Journal of Information Management, 60, 102387. https://doi.org/10.1016/j. ijinfomgt.2021.102387
Akter S. McCarthy G. Sajib S. Michael K. Dwivedi Y. K. D’Ambra J. Shen K. N. ( 2021 ). Algorithmic bias in data-driven innovation in the age of AI . International Journal of Information Management , 60 , 102387 . https://doi.org/10.1016/j.ijinfomgt.2021.102387
- Amiel, T., & Reeves, T. C. (2008). Design-based research and educational technology: Rethinking technology and the research agenda. Educational Technology & Society, 11(4), 29–40.
- Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research? Educational Researcher, 41(1), 16–25. https://doi.org/10.3102/0013189X11428813
- Baker, R. S., & Smith, L. B. (2019). Improving the effectiveness of digital educational games: The effects of a games-based learning management system. Interactive Learning Environments, 27(5–6), 704–720. https://doi.org/10.1080/104948 20.2018.1541910
- Bloom, B. S. (Ed.). (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive Domain. David McKay Company.
- Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
- Brown, T. (2008). Design thinking. Harvard Business Review, 86(6), 84–92.
- Cahane, A., & Shwartz-Altshuler, T. (2023). Human, machine, state: Towards the regulation of artificial intelligence. The Israel Democracy Institute. https://www.idi.org.il/media/21222/human-machine-state.pdf
- Carolus, A., Augustin, Y., Markus, A., & Wienrich, C. (2023). Digital interaction literacy model – Conceptualizing competencies for literate interactions with voice-based AI systems. Computers and Education: Artificial Intelligence, 4, 100114. https://doi.org/10.1016/j.caeai.2022.100114
- Chakravorti, N. (2022). Digital transformation: A strategic structure for implementation (1st ed.). Productivity Press. https://doi.org/10.4324/9781003270904
- Chaudhry, M. A., Cukurova, M., & Luckin, R. (2022). A transparency index framework for AI in education. In M. M. Rodrigo, N. Matsuda, A. Cristea I, & V. Dimitrova (Eds.), Artificial intelligence in education. Posters and late breaking results, workshops and tutorials, industry and innovation tracks, practitioners’ and doctoral consortium. AIED 2022. (pp. 195-198). Lecture Notes in Computer Science (Vol. 13356). Springer. https://doi.org/10.1007/978-3-031-11647-6_33
- Coburn, C. E., & Penuel, W. R. (2016). Research– practice partnerships in education: Outcomes, dynamics, and open questions. Educational Researcher, 45(1), 48–54. https://doi.org/10.3102/0013189X16631750
- Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal of the Learning Sciences, 13:1, 15-42, DOI: 10.1207/s15327809jls1301_2
- Gill, S. S., Xu, M., Patros, P., Wu, H., Kaur, R., Kaur, K., … & Buyya, R. (2024). Transformative effects of ChatGPT on modern education: Emerging era of AI Chatbots. Internet of Things and Cyber-Physical Systems, 4, 19–23. https://doi.org/10.1016/j.iotcps.2023.06.002
- Gonen-Avital, S. (2016). Cultural Diversity and its Implication on Parents’ Attitudes Toward their Child Learning Disability – An Outline of a Research Study. Studia Edukacyjne, 40, 353–377.
- Grubaugh, S., & Levitt, G. (2023). Artificial intelligence and the paradigm shift: Reshaping education to equip students for future careers. International Journal of Social Sciences and Humanities Invention, 10(6), 7931–7941. https://doi.org/10.18535/ijsshi/v10i06.02
- Hall, G. E., & Hord, S. M. (2015). Implementing change: Patterns, principles, and potholes. (4th ed.). Pearson Education, Inc.
- Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial Intelligence in Education, 24(4), 470–497. https://doi.org/10.1007/s40593-014-0024-x
- Holstein, K., Aleven, V., & Rummel, N. (2020). A conceptual framework for human-AI hybrid adaptivity in education. In I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán (Eds.), Artificial intelligence in education. AIED 2020. (pp. 240–254). Lecture Notes in Computer Science (Vol. 12163). Springer. https://doi.org/10.1007/978-3-030-52237-7_20
- Hurtado-Mazeyra, A., Núñez-Pacheco, R., Barreda-Parra, A., Guillén-Chávez, E. P., & Turpo-Gebera, O. (2022, November). Digital competencies of Peruvian teachers in basic education. In A. Palacios-Rodríguez (Ed.) Frontiers in education (Vol. 7, p. 1058653). Frontiers Media SA.
- Israeli Ministry of Education. (2021a). Learning perception. https://pop.education.gov.il/perceptions-trends/renewable-learning-concept/https://meyda.education.gov.il/files/Planning/dmuthabogermismach.pdf
- Israeli Ministry of Education. (2021b). The national pedagogical policy-The graduate’s character. https://meyda.education.gov.il/files/Planning/boger.pdfhttps://boger.openfox.io/%D7%A2%D7 %9E%D7%95%D7%93_%D7%A8%D7%90%D7 %A9%D7%99
- Kali, Y., Eylon, B.-S., McKenney, S., & Kidron, A. (2018). Design-Centric Research-Practice Partnerships: Three Key Lenses for Building Productive Bridges Between Theory and Practice. In M. J. Spector, B. B. Lockee, & M. D. Childress (Eds.), Learning, Design, and Technology: An International Compendium of Theory, Research, Practice, and Policy (pp. 1-30). Springer International Publishing. https://doi. org/10.1007/978-3-319-17727-4_122-
- Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–16).
- Mercer, N., Wegerif, R., & Major, L. (2020). The Routledge international handbook of research on dialogic education. Routledge.
- Mikeladze, T., Meijer, P. C., & Verhoeff, R. P. (2024). A comprehensive exploration of artificial intelligence competence frameworks for educators: A critical review. European Journal of Education, 00, e12663. https://doi.org/10.1111/ejed.12663
- Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x
- Mishra, P., & Oster, N. (2023). Developing a teaching compass in the age of AI a concept paper focusing on teacher competencies. https://punyamishra. com/wp-content/uploads/2023/12/Developing-a-Teaching-Compass-in-the-Age-of-AI.pdf
- Mor, Y., & Winters, N. (2007). Design approaches in technology-enhanced learning. Interactive Learning Environments, 15(1), 61–75. https://doi.org/10.1080/10494820601044236
- Norman, D. A. (2013). The design of everyday things: Revised and expanded edition. Basic Books.
- OECD. (2018). The future of education and skills education 2030. Organization for Economic Cooperation and Development. https://www.oecd-ilibrary.org/education/the-future-of-education-and-skills_54ac7020-enhttps://www.oecd.org/education/2030/E2030%20Position%20Paper%20 %2805.04.2018%29.pdf
- OECD. (2019a). Transformative competencies for 2030. https://www.oecd.org/en/about/projects/future-of-education-and-skills-2030.html https://www. oecd.org/education/2030-project/teaching-and-learning/learning/transformative-competencies/Transformative_Competencies_for_2030_ concept_note.pdf
- OECD. (2019b). OECD future of education and skills 2030 conceptual learning framework: Skills for 2030. https://www.oecd.org/education/2030-project/teaching-and-learning/learning/skills/Skills_for_2030.pdfhttps://www.oecd.org/en/about/projects/future-of-education-and-skills-2030.html
- OECD. (2023). OECD future of education and skills 2030: Learning compass 2030 concept notes. OECD Publishing. https://issuu.com/oecd. publishing/docs/e2030-learning_compass_2030-concept_notes?fr=xKAE9_zU1NQ
- Olari, V., & Romeike, R. (2021). Addressing AI and data literacy in teacher education: A review of existing educational frameworks. In M. Berges, A. Mühling, & M. Armoni (Eds.), Proceedings of the 16th Workshop in Primary and Secondary Computing Education (pp. 1–2). Association for Computing Machinery.
- Patel, K. (2024). Ethical reflections on data-centric AI: Balancing benefits and risks. International Journal of Artificial Intelligence Research and Development, 2(1), 1–17.
- Rebhun, U. (2023). Jewish diversity in Israel. European Judaism, 56(2), 88–111. https://doi.org/10.3167/ej.2023.560209
- Russell, S. J., & Norvig, P. (2020). Artificial intelligence: A modern approach (4rd ed.). Pearson.
- Sattelmaier, L., & Pawlowski, J. M. (2023, December). Towards a generative artificial intelligence competence framework for schools. In Proceedings of the International Conference on Enterprise and Industrial Systems (ICOEINS 2023) (Vol. 270, p. 291). Springer Nature.
- Shamir, G., & Levin, I. (2022). Teaching machine learning in elementary school. International Journal of Child-Computer Interaction, 31(C), 100415. https://doi.org/10.1016/j.ijcci.2021.100415
- Su, J., Zhong, Y., & Ng, D. T. K. (2022). A metareview of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education: Artificial Intelligence, 3, 100065.
- UNESCO. (2018). UNESCO ICT competency framework for teachers. https://unesdoc.unesco.org/ark:/48223/pf0000265721/PDF/265721eng.pdf. multi
- UNESCO. (2019). Beijing consensus on artificial intelligence and education. Outcome document of the International Conference on Artificial Intelligence and Education, 16–18 May 2019, Beijing, People’s Republic of China. https://unesdoc.unesco.org/ark:/48223/f0000368303
- UNESCO. (2023). Guidance for generative AI in education and research. (F. Miao & K. Shiohira, Authors).United Nations Educational, Scientific and Cultural Organization, France. https://doi.org/10.54675/EWZM9535
- Van der Linden, W. J., & Glas, C. A. W. (2010). Elements of adaptive testing. In W. J. van der Linden & C. A. W. Glas (Eds.), Elements of adaptive testing (pp. 3–30). Springer. https://doi.org/10.1007/978-0-387-85461-8_1
- Wang, F. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000366994
- Xie, H., Chu, H. C., Hwang, G. J., & Wang, C. C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. Computers & Education, 140, 103599. https://doi.org/10.1016/j.compedu.2019.103599
- Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). A systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0
- Zhao, Y., & Frank, K. A. (2003). Factors Affecting Technology Uses in Schools: An Ecological Perspective. American Educational Research Journal, 40(4), 807-840. https://doi.org/10.3102/00028312040004807
- Zhou, M., & Brown, D. (2020). Educational data mining: A case study of the prediction of students’ academic performance. Journal of Educational Data Mining, 12(1), 19–38. https://doi.org/10.5281/zenodo.3879643