References
- Andrew, S., & Halcomb, E. J. (2009). Mixed methods research for nursing and the health sciences. Blackwell Pub.
- Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33(1), 63. https://doi.org/10.1007/s12525-023-00680-1
- Bonsu, E. M., & Baffour-Koduah, D. (2023). From the consumers’ side: Determining students’ perception and intention to use ChatGPT in Ghanaian higher education. Journal of Education, Society & Multiculturalism, 4(1), 1–29. https://doi.org/10.2478/jesm-2023-0001
- Chiu, T. K. F. (2023). The impact of generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, 1–17. https://doi.org/10.1080/10494820.2023.2253861
- Correll, S. J. (2001). Gender and the career choice process: The role of biased self assessments. American Journal of Sociology, 106(6), 1691–1730. https://doi.org/10.1086/321299
- Dahlkemper, M. N., Lahme, S. Z., & Klein, P. (2023). How do physics students evaluate artificial intelligence responses on comprehension questions? A study on the perceived scientific accuracy and linguistic quality of ChatGPT. Physical Review Physics Education Research, 19(1), 010142. https://doi.org/10.1103/PhysRevPhysEducRes.19.010142
- Dimla, C. Y., Sumaway, M. D., Torres, J. M. T., & Dela Cruz, C. A. B. (2024). The role of artificial intelligence in personalized learning: Enhancing student engagement and academic performance. International Journal of Research Publication and Reviews, 4(4), 8495-8505.
- Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., …& Wright, R. (2023). Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642
- Ehrlinger, J., & Dunning, D. (2003). How chronic self-views influence (and potentially mislead) estimates of performance. Journal of Personality and Social Psychology, 84(1), 5–17. https://doi.org/10.1037/0022-3514.84.1.5
- Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative AI. Business & Information Systems Engineering, 66(1), 111–126. https://doi.org/10.1007/s12599-023-00834-7
- Haensch, A.-C., Ball, S., Herklotz, M., & Kreuter, F. (2023). Seeing ChatGPT through students’ eyes: An analysis of TikTok data.
- Huang, C. (2013). Gender differences in academic selfefficacy: A meta-analysis. European Journal of Psychology of Education, 28(1), 1–35. https://doi.org/10.1007/s10212-011-0097-y
- Idowu, J. A. (2024). Debiasing education algorithms. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-023-00389-4
- Jordan, M. I, & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
- Kohnke, L., Moorhouse, B. L., & Zou, D. (2023). Exploring generative artificial intelligence preparedness among university language instructors: A case study. Computers and Education: Artificial Intelligence, 5(2), 100156. https://doi.org/10.1016/j.caeai.2023.100156
- Kurtz, G., Amzalag, M., Shaked, N., Zaguri, Y., Kohen-Vacs, D., Gal, E., …& Barak-Medina, E. (2024). Strategies for integrating generative AI into higher education: Navigating challenges and leveraging opportunities. Education Sciences, 14(5), 503. https://doi.org/10.3390/educsci14050503
- Malik, T., Dettmer, S., Hughes, L., & Dwivedi, Y. K. (2024). Academia and generative artificial intelligence (GenAI) SWOT analysis – Higher education policy implications. In S. K. Sharma, Y. K. Dwivedi, B. Metri, B. Lal, & A. Elbanna (Eds.), Transfer, diffusion and adoption of next-generation digital technologies (pp. 3–16). Springer Nature Switzerland.
- Mao, J., Chen, B., & Liu, J. C. (2024). Generative artificial intelligence in education and its implications for assessment. TechTrends, 68(1), 58–66. https://doi. org/10.1007/s11528-023-00911-4
- Marengo, A., Pagano, A., Pange, J., & Soomro, K. A. (2024). The educational value of artificial intelligence in higher education: A 10-year systematic literature review. Interactive Technology and Smart Education. https://doi.org/10.1108/ITSE-11-2023-0218
- Mathew, R., & Stefaniak, J. E. (2024). A needs assessment to support faculty members’ awareness of generative AI technologies to support instruction. TechTrends, 68, 773–789. https://doi.org/10.1007/s11528-024-00964-z
- Ooi, K.-B., Tan, G. W.-H., Al-Emran, M., Al-Sharafi, M. A., Capatina, A., Chakraborty, A., …& Wong, L.-W. (2023). The potential of generative artificial intelligence across disciplines: Perspectives and future directions. Journal of Computer Information Systems, 1-32. https://doi.org/10.1080/08874417.2023.2261010
- Padgett DK. (2012). Qualitative and mixed methods in public health. SAGE Publications. https://doi.org/doi:10.4135/9781483384511
- Pallier, G. (2003). Gender differences in the selfassessment of accuracy on cognitive tasks. Sex Roles, 48(5), 265–276. https://doi.org/10.1023/A:1022877405718
- Pedró, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development.
- Ravi Kumar, V. V., & Raman, R. (2022). Student perceptions on artificial intelligence (AI) in higher education. 2022 IEEE integrated STEM education conference (ISEC) (pp. 450-454).
- Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
- Sáinz, M., Fàbregues, S., & Solé, J. (2020). Parent and teacher depictions of gender gaps in secondary student appraisals of their academic competences. Frontiers in Psychology, 11, 573752. https://doi.org/10.3389/fpsyg.2020.573752
- Saks, M., & Allsop, J. (2013). Researching health: Qualitative, quantitative and mixed methods (2nd ed.). SAGE London.
- Saldana, J. (2009). The coding manual for qualitative researchers. Sage Publications.
- Turing, A. M. (2009). Computing machinery and intelligence. In R. Epstein, G. Roberts, & G. Beber (Eds.), Parsing the Turing test: Philosophical and methodological issues in the quest for the thinking computer (pp. 23–65). Springer Netherlands.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., …& Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems.
- Wang, L., & Yu, Z. (2023). Gender-moderated effects of academic self-concept on achievement, motivation, performance, and self-efficacy: A systematic review. Frontiers in Psychology, 14, 1136141. https://doi.org/10.3389/fpsyg.2023.1136141
- Zou, B., Liviero, S., Hao, M., & Wei, C. (2020). Artificial intelligence technology for EAP speaking skills: Student perceptions of opportunities and challenges. In M. R. Freiermuth & N. Zarrinabadi (Eds.), Technology and the psychology of second language learners and users (pp. 433–463). Springer International Publishing.