References
- Aguiar C., Therrien J., Lemire P., Segura M., Smith L., Theoret C. (2016). Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage. Equine Vet. J., 48: 338–345.
- Allendorf F. W., England P. R., Luikart G., Ritchie P. A., Ryman N. (2008). Genetic effects of harvest on wild animal populations. Trends Ecol. Evol., 23: 327–337.
- An J.-H., Li F.-P., He P., Chen J.-S., Cai Z.-G., Liu S.-R., Yue C.-J., Liu Y.-L., Hou R.
- (2020). Characteristics of mesenchymal stem cells isolated from the bone marrow of red pandas. Zoology, 140: 125775.
- Appleton E., Hong K., Rodríguez-Caycedo C., Tanaka Y., Ashkenazy-Titelman A., Bhide K.,
- Rasmussen-Ivey C., Ambriz-Pena X., Korover N., Bai H., & others. (2024). Derivation of elephant induced pluripotent stem cells. bioRxiv., 2024–03.
- Arabacı D. H., Terzioğlu G., Bayırbaşı B., Önder T. T. (2021). Going up the hill: Chromatin-based barriers to epigenetic reprogramming. FEBS J., 288: 4798–4811.
- Aravalli R. N., Cressman E. N., Steer C. J. (2012). Hepatic differentiation of porcine induced pluripotent stem cells in vitro. Vet. J., 194: 369–374.
- Baltus G. A., Kowalski M. P., Zhai H., Tutter A. V., Quinn D., Wall D., Kadam S. (2009).
- Acetylation of sox2 induces its nuclear export in embryonic stem cells. Stem cells., 27: 2175–2184.
- Bao Q., Tay N. L., Lim C. Y., Chua D. H. H., Kee S. K., Choolani M., Loh Y.-H., Ng S. C., Chai C. (2024). Integration-free induced pluripotent stem cells from three endangered Southeast Asian non-human primate species. Sci. Rep., 14: 2391.
- Bjork B. C., Fujiwara Y., Davis S. W., Qiu H., Saunders T. L., Sandy P., Orkin S., Camper S.
- A., Beier D. R. (2010). A transient transgenic RNAi strategy for rapid characterization of gene function during embryonic development. PLoS One, 5: e14375.
- Borges A. A., Pereira A. F. (2019). Potential role of intraspecific and interspecific cloning in the conservation of wild mammals. Zygote, 27: 111–117.
- Boulting G. L., Kiskinis E., Croft G. F., Amoroso M. W., Oakley D. H., Wainger B. J., Williams D. J., Kahler D. J., Yamaki M., Davidow L., & others. (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat. Biotechnol., 29: 279–286.
- Bradley A., Evans M., Kaufman M. H., Robertson E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 309: 255–256. Bressan F. F., Lima M. A. de, Machado L. S., Pieiri N., Fantinato-Neto P., Therrien J.,
- Perecin F., Smith L. C., Meirelles F. V. (2018). In vitro generation and characterization of putative primordial germ cells derived from induced pluripotent stem cells in cattle. Reprod. Fertil. Dev., 30: 231–232.
- Bressan F., Machado L., Pieri N., Meirelles F. (2016). In vitro generation of primordial germ cells (PGCs) from induced pluripotent stem cells (iPSCs) in cattle. Anim. Reprod., 13: 671.
- Breton A., Sharma R., Diaz A. C., Parham A. G., Graham A., Neil C., Whitelaw C. B., Milne
- E., Donadeu F. X. (2013). Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev., 22: 611–621.
- Brouwer M., Zhou H., Nadif Kasri N. (2016a). Choices for induction of pluripotency: Recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev. Rep., 12: 54–72.
- Brouwer M., Zhou H., Nadif Kasri N. (2016b). Choices for induction of pluripotency: Recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev. Rep., 12: 54–72.
- Buganim Y., Markoulaki S., Van Wietmarschen N., Hoke H., Wu T., Ganz K., Akhtar-Zaidi
- B., He Y., Abraham B. J., Porubsky D., & others. (2014). The developmental potential of iPSCs is greatly influenced by reprogramming factor selection. Cell Stem Cell., 15: 295–309.
- Bunnell B. A., Flaat M., Gagliardi C., Patel B., Ripoll C. (2008). Adipose-derived stem cells:
- Isolation, expansion and differentiation. Methods., 45: 115–120.
- Chappell J., Dalton S. (2013). Roles for MYC in the establishment and maintenance of pluripotency. Cold Spring Harb. Perspect. Med., 3: a014381.
- Chen G., Gulbranson D. R., Hou Z., Bolin J. M., Ruotti V., Probasco M. D., Smuga-Otto K.,
- Howden S. E., Diol N. R., Propson N. E., & others. (2011). Chemically defined conditions for human iPSC derivation and culture. Nat. Methods., 8: 424–429.
- Chow L., Johnson V., Regan D., Wheat W., Webb S., Koch P., Dow S. (2017). Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cell Res., 25: 221–232.
- Cieślar-Pobuda A., Knoflach V., Ringh M. V., Stark J., Likus W., Siemianowicz K., Ghavami
- S., Hudecki A., Green J. L., Łos M. J. (2017). Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochim. biophys. Acta., 1864: 1359–1369.
- Conrad J. V., Meyer S., Ramesh P. S., Neira J. A., Rusteika M., Mamott D., Duffin B.,
- Bautista M., Zhang J., Hiles E., & others. (2023). Efficient derivation of transgene-free porcine induced pluripotent stem cells enables in vitro modeling of species-specific developmental timing. Stem Cell Rep., 18: 2328–2343.
- Cowl V. B., Comizzoli P., Appeltant R., Bolton R. L., Browne R. K., Holt W. V., Penfold L.
- M., Swegen A., Walker S. L., Williams S. A. (2024). Cloning for the Twenty-First Century and Its Place in Endangered Species Conservation. Annu. Rev. Anim. Biosci., 12: 91–112.
- Cravero D., Martignani E., Miretti S., Accornero P., Pauciullo A., Sharma R., Donadeu F. X.,
- Baratta M. (2015a). Generation of induced pluripotent stem cells from bovine epithelial cells and partial redirection toward a mammary phenotype in vitro. Cell. Reprogram., 17: 211–220.
- Cravero D., Martignani E., Miretti S., Accornero P., Pauciullo A., Sharma R., Donadeu F. X., Baratta M. (2015b). Generation of induced pluripotent stem cells from bovine epithelial cells and partial redirection toward a mammary phenotype in vitro. Cell. Reprogram., 17: 211–220.
- Cunningham E. (1999). The application of biotechnologies to enhance animal production in different farming systems. Livest. prod. sci., 58: 1–24.
- D’Aiuto L., Zhi Y., Kumar Das D., Wilcox M. R., Johnson J. W., McClain L., MacDonald M.
- L., Di Maio R., Schurdak M. E., Piazza P., & others. (2014). Large-scale generation of
- human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis., 10: 365–377.
- de Castro R. V., Pieri N. C., Fantinato Neto P., Grizendi B. M., Dória R. G., Meirelles F. V.,
- Smith L. C., Garcia J. M., Bressan F. F. (2020). In vitro induction of pluripotency from equine fibroblasts in 20% or 5% oxygen. Stem cells int., 2020: 8814989.
- de los Reyes N. M., Carvajal-Serna M., Flores-Borobia I., Marigorta P., Peris-Frau P.,
- Santiago-Moreno J., Bermejo-Álvarez P., Ramos-Ibeas P. (2024). Optimized heterologous in vitro fertilization with Iberian ibex sperm and domestic goat oocytes. Theriogenology Wild., 4: 100075.
- de Oliveira Santos M. V., Silva A. R., Pereira A. F. (2022). Embryo production by fertilization in wild ungulates: Progress and perspectives–A Review. Ann. anim. sci., 22: 1151–1162.
- DeWoody J. A., Harder A. M., Mathur S., Willoughby J. R. (2021). The long-standing significance of genetic diversity in conservation. Mol. ecol., 30: 4147–4154.
- do Nascimento Costa J. J., de Souza G. B., Bernardo J. M. P., Ribeiro R. P., de Souza Passos J. R., Bezerra F. T. G., Saraiva M. V. A., Silva J. R. V. (2017). Expression of markers for germ cells and oocytes in cow dermal fibroblast treated with 5-azacytidine and cultured in differentiation medium containing BMP2, BMP4 or follicular fluid. Zygote., 25: 341–357.
- Dutton L. C., Dudhia J., Guest D. J., Connolly D. J. (2019). Inducing pluripotency in the domestic cat (Felis catus). Stem cells dev., 28: 1299–1309.
- Easley IV C. A., Miki T., Castro C. A., Ozolek J. A., Minervini C. F., Ben-Yehudah A., Schatten G. P. (2012). Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts. Cellular Reprogramming (Formerly “Cloning and Stem Cells”)., 14: 193–203.
- Evans M. J., Kaufman M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature., 292: 154–156.
- Fang F., Li Z., Zhao Q., Xiong C., Ni K. (2020). Analysis of multi-lineage gene expression dynamics during primordial germ cell induction from human induced pluripotent stem cells. Stem Cell Research & Therapy., 11: 1–9.
- Fortier L. A., Travis A. J. (2011). Stem cells in veterinary medicine. Stem Cell Research & Therapy., 2: 1–6.
- Founta K.-M., Papanayotou C. (2022). In vivo generation of organs by blastocyst complementation: Advances and challenges. International Journal of Stem Cells., 15: 113–121.
- Friedrich Ben-Nun I., Montague S. C., Houck M. L., Tran H. T., Garitaonandia I., Leonardo T. R., Wang Y.-C., Charter S. J., Laurent L. C., Ryder O. A. (2011). Induced pluripotent stem cells from highly endangered species. Nature Methods., 8: 829–831.
- Fritts R. (2022). Cloning goes wild. Science., 375: 134–137.
- Fu K., Chronis C., Soufi A., Bonora G., Edwards M., Smale S. T., Zaret K. S., Plath K., Pellegrini M. (2018). Comparison of reprogramming factor targets reveals both species-specific and conserved mechanisms in early iPSC reprogramming. BMC Genomics., 19: 1–13.
- Funakoshi S., Miki K., Takaki T., Okubo C., Hatani T., Chonabayashi K., Nishikawa M., Takei I., Oishi A., Narita M., others. (2016). Enhanced engraftment, proliferation and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Scientific Reports., 6: 19111.
- Fusaki N., Ban H., Nishiyama A., Saeki K., Hasegawa M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy, Series B., 85: 348–362.
- Ghasemzadeh-Hasankolaei M., Eslaminejad M., Batavani R., Sedighi-Gilani M. (2014). Comparison of the efficacy of three concentrations of retinoic acid for transdifferentiation induction in sheep marrow-derived mesenchymal stem cells into male germ cells. Andrologia., 46: 24–35.
- Gonçalves N., Ambrósio C. E., Piedrahita J. A. (2014). Stem cells and regenerative medicine in domestic and companion animals: A multispecies perspective. Reproduction in Domestic Animals., 49: 2–10.
- González F., Boué S., Belmonte J. C. I. (2011). Methods for making induced pluripotent stem cells: Reprogramming a la carte. Nature Reviews Genetics., 12: 231–242.
- Han J. W., Yoon Y. (2012). Epigenetic landscape of pluripotent stem cells. Antioxidants & Redox Signaling., 17: 205–223.
- Han X., Han J., Ding F., Cao S., Lim S. S., Dai Y., Zhang R., Zhang Y., Lim B., Li N. (2011). Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research., 21: 1509–1512.
- Hanna J., Cheng A. W., Saha K., Kim J., Lengner C. J., Soldner F., Cassady J. P., Muffat J., Carey B. W., Jaenisch R. (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences., 107: 9222–9227.
- Hansen P. J. (2014). Current and future assisted reproductive technologies for mammalian farm animals. Current and Future Reproductive Technologies and World Food Production., 1–22.
- Hayashi K., Ogushi S., Kurimoto K., Shimamoto S., Ohta H., Saitou M. (2012). Offspring from oocytes derived from in vitro primordial germ cell–like cells in mice. Science., 338: 971–975.
- Hayashi K., Ohta H., Kurimoto K., Aramaki S., Saitou M. (2011). Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell., 146: 519–532.
- Hayashi K., Saitou M. (2013). Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nature Protocols., 8: 1513–1524.
- Hayashi M., Zywitza V., Naitou Y., Hamazaki N., Goeritz F., Hermes R., Holtze S., Lazzari G., Galli C., Stejskal J., others. (2022). Robust induction of primordial germ cells of white rhinoceros on the brink of extinction. Science Advances., 8: eabp9683.
- Hikabe O., Hamazaki N., Nagamatsu G., Obata Y., Hirao Y., Hamada N., Shimamoto S., Imamura T., Nakashima K., Saitou M. (2016). Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature., 539: 299–303.
- Hildebrandt T. B., Holtze S. (2024). Advanced assisted reproduction technologies in endangered mammalian species. Reproduction in Domestic Animals., 59: e14700.
- Holt W. V., Pickard A. R., Prather R. S. (2004). Wildlife conservation and reproductive cloning. Reproduction., 127: 317–324.
- Honda A., Choijookhuu N., Izu H., Kawano Y., Inokuchi M., Honsho K., Lee A.-R., Nabekura H., Ohta H., Tsukiyama T. (2017). Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis. Science Advances., 3: e1602179.
- Hua J., Zhu H., Pan S., Liu C., Sun J., Ma X., Dong W., Liu W., Li W. (2011). Pluripotent male germline stem cells from goat fetal testis and their survival in mouse testis. Cellular Reprogramming (Formerly “Cloning and Stem Cells”)., 13: 133–144.
- Huang C.-Y., Liu C.-L., Ting C.-Y., Chiu Y.-T., Cheng Y.-C., Nicholson M. W., Hsieh P. C. (2019). Human iPSC banking: Barriers and opportunities. Journal of Biomedical Science., 26: 1–14.
- Huang D., Wei Z., Lu W. (2013). Genome organization by Klf4 regulates transcription in pluripotent stem cells. Cell Cycle., 12: 3351–3352.
- Hwang Y. S., Suzuki S., Seita Y., Ito J., Sakata Y., Aso H., Sato K., Hermann B. P., Sasaki K. (2020). Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nature Communications., 11: 5656.
- Ibtisham F., Yanfeng N., Wang Z., Wu J., Xiao M., An L. (2016). Animal cloning drawbacks an-overview. J. Dairy Vet. Anim. Res., 3: 3–7.
- Ishikura Y., Yabuta Y., Ohta H., Hayashi K., Nakamura T., Okamoto I., Yamamoto T., Kurimoto K., Shirane K., Sasaki H. (2016). In vitro derivation and propagation of spermatogonial stem cell activity from mouse pluripotent stem cells. Cell Reports., 17: 2789–2804.
- Johansson H., Simonsson S. (2010). Core transcription factors, Oct4, Sox2 and Nanog, individually form complexes with nucleophosmin (Npm1) to control embryonic stem (ES) cell fate determination. Aging (Albany NY)., 2: 815.
- Julaton V. T. A., Reijo Pera R. A. (2011). NANOS3 function in human germ cell development. Human Molecular Genetics., 20: 2238–2250.
- Keisuke O., Masato N., Hong H., Tomoko I., Shinya Y. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science., 322: 949–953.
- Kobayashi T., Goto T., Oikawa M., Sanbo M., Yoshida F., Terada R., Niizeki N., Kajitani N., Kazuki K., Kazuki Y. (2021). Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. Nature Communications., 12: 1328.
- Korody M. L., Ford S. M., Nguyen T. D., Pivaroff C. G., Valiente-Alandi I., Peterson S. E., Ryder O. A., Loring J. F. (2021). Rewinding extinction in the northern white rhinoceros: Genetically diverse induced pluripotent stem cell bank for genetic rescue. Stem Cells and Development., 30: 177–189.
- Kuroda T., Tada M., Kubota H., Kimura H., Hatano S., Suemori H., Nakatsuji N., Tada T. (2005). Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Molecular and Cellular Biology.
- Kwon D.-J., Hwang I.-S., Kwak T.-U., Yang H., Park M.-R., Ock S.-A., Oh K. B., Woo J.-S., Im G.-S., Hwang S. (2017). Effects of cell cycle regulators on the cell cycle synchronization of porcine induced pluripotent stem cells. Development & Reproduction., 21: 47.
- Lamglait B. (2014). Longevity of sperm cells retrieved by post mortem epididymal aspiration in wild bovids in zoo conditions. Journal of Zoo and Aquarium Research., 2: 92–100.
- Lee N. J., Wang S. J., KayDurairaj K., Srivatsan E. S., Wang M. B. (2000). Increased Expression of Transforming Growth Factor-β1, Acidic Fibroblast Growth Factor, and Basic Fibroblast Growth Factor in Fetal Versus Adult Fibroblast Cell Lines. The Laryngoscope., 110: 616–619.
- Li N., Ma W., Shen Q., Zhang M., Du Z., Wu C., Niu B., Liu W., Hua J. (2019). Reconstitution of male germline cell specification from mouse embryonic stem cells using defined factors in vitro. Cell Death & Differentiation., 26: 2115–2124.
- Li R., Yang P., Dai X., Asadollahpour Nanaei H., Fang W., Yang Z., Cai Y., Zheng Z., Wang X., Jiang Y. (2021). A near complete genome for goat genetic and genomic research. Genetics Selection Evolution., 53: 1–17.
- Li Y., Sun Q. (2022). Epigenetic manipulation to improve mouse SCNT embryonic development. Frontiers in Genetics., 13: 932867.
- Li Y., Wu S., Li X., Guo S., Cai Z., Yin Z., Zhang Y., Liu Z. (2020). Wnt signaling associated small molecules improve the viability of pPSCs in a PI3K/Akt pathway dependent way. Journal of Cellular Physiology., 235: 5811–5822.
- Li Y., Zhang Q., Yin X., Yang W., Du Y., Hou P., Ge J., Liu C., Zhang W., Zhang X. (2011). Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research., 21: 196–204.
- Li Z., Li Y., Zhang Q., Ge W., Zhang Y., Zhao X., Hu J., Yuan L., Zhang W. (2023). Establishment of bactrian camel induced pluripotent stem cells and prediction of their unique pluripotency genes. International Journal of Molecular Sciences., 24: 1917.
- Liu H., Zhu F., Yong J., Zhang P., Hou P., Li H., Jiang W., Cai J., Liu M., Cui K. (2008). Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell., 3: 587–590.
- Liu Y., Liu Y., Yie S., Lan J., Pi J., Zhang Z., Huang H., Cai Z., Zhang M., Cai K. (2013). Characteristics of mesenchymal stem cells isolated from bone marrow of giant panda. Stem Cells and Development., 22: 2394–2401.
- Liu Y., Zhang S., Zou G., An J., Li Y., Lin D., Wang D., Li Y., Chen J., Feng T. (2024). Generation and characterization of giant panda induced pluripotent stem cells. Science Advances., 10: eadn7724.
- Luo J., Suhr S. T., Chang E. A., Wang K., Ross P. J., Nelson L. L., Venta P. J., Knott J. G., Cibelli J. B. (2011). Generation of leukemia inhibitory factor and basic fibroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells and Development., 20: 1669–1678.
- Luo W., Geng Y., Gao M., Cao M., Wang J., Yang J., Sun C., Yan X. (2022). Isolation and identification of bone marrow mesenchymal stem cells from forest musk deer. Animals., 13: 17.
- Lutz W., Leon J., Eilers M. (2002). Contributions of Myc to tumorigenesis. Biochimica Et Biophysica Acta (BBA)-Reviews on Cancer., 1602: 61–71.
- Machado L. S., Pieri N. C. G., Botigelli R. C., de Castro R. V. G., de Souza A. F., Bridi A., Lima M. A., Fantinato Neto P., Pessoa L. V. de F., Martins S. M. M. K., et al. (2020). Generation of neural progenitor cells from porcine-induced pluripotent stem cells. J. Tissue Eng. Regen. Med., 14: 1880–1891.
- Magnúsdóttir E., Dietmann S., Murakami K., Günesdogan U., Tang F., Bao S., Diamanti E., Lao K., Gottgens B., Azim Surani M. (2013). A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat. Cell Biol., 15: 905–915.
- Maherali N., Hochedlinger K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell., 3: 595–605.
- Mali P., Ye Z., Hommond H. H., Yu X., Lin J., Chen G., Zou J., Cheng L. (2008). Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells., 26: 1998–2005.
- Malik H. N., Singhal D. K., Saini S., Malakar D. (2020). Derivation of oocyte-like cells from putative embryonic stem cells and parthenogenetically activated into blastocysts in goat. Sci. Rep., 10: 10086.
- Malik N., Rao M. S. (2013). A review of the methods for human iPSC derivation. In Pluripotent Stem Cells: Methods and Protocols (pp. 23–33).
- Malin K., Witkowska-Piłaszewicz O., Papis K. (2022). The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology., 189: 246–254.
- Marchetto M. C., Narvaiza I., Denli A. M., Benner C., Lazzarini T. A., Nathanson J. L., Paquola A. C., Desai K. N., Herai R. H., Weitzman M. D., et al. (2013). Differential L1 regulation in pluripotent stem cells of humans and apes. Nature., 503: 525–529.
- Martí M., Mulero L., Pardo C., Morera C., Carrió M., Laricchia-Robbio L., Esteban C. R., Belmonte J. C. I. (2013). Characterization of pluripotent stem cells. Nat. Protoc., 8: 223–253.
- Medvedev S., Malakhova A., Grigor’Eva E., Shevchenko A., Dementyeva E., Sobolev I., Lebedev I., Shilov A., Zhimulev I., Zakian S. (2010). Derivation of induced pluripotent stem cells from fetal human skin fibroblasts. Acta Naturae (англоязычная версия)., 2: 102–104.
- Meissner A. (2010). Epigenetic modifications in pluripotent and differentiated cells. Nat. Biotechnol., 28: 1079–1088.
- Mo X., Li N., Wu S. (2014). Generation and characterization of bat-induced pluripotent stem cells. Theriogenology., 82: 283–293.
- Murakami K., Hamazaki N., Hamada N., Nagamatsu G., Okamoto I., Ohta H., Nosaka Y., Ishikura Y., Kitajima T. S., Semba Y. (2023). Generation of functional oocytes from male mice in vitro. Nature., 615: 900–906.
- Nakagawa M., Koyanagi M., Tanabe K., Takahashi K., Ichisaka T., Aoi T., Okita K., Mochiduki Y., Takizawa N., Yamanaka S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science., 322: 949–953.
- Nayernia K., Lee J. H., Drusenheimer N., Nolte J., Wulf G., Dressel R., Gromoll J., Engel W. (2006). Derivation of male germ cells from bone marrow stem cells. Lab. Invest., 86: 654–663.
- Ng F., Boucher S., Koh S., Sastry K. S., Chase L., Lakshmipathy U., Choong C., Yang Z., Vemuri M. C., Rao M. S., et al. (2008). PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): Transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood., 112: 295–307.
- Oikawa M., Kobayashi H., Sanbo M., Mizuno N., Iwatsuki K., Takashima T., Yamauchi K., Yoshida F., Yamamoto T., Shinohara T. (2022). Functional primordial germ cell–like cells from pluripotent stem cells in rats. Science., 376: 176–179.
- Okita K., Nakagawa M., Hyenjong H., Ichisaka T., Yamanaka S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science., 322: 949–953.
- Ortega M. S., Kelleher A. M., O’Neil E., Benne J., Cecil R., Spencer T. E. (2020). NANOG is required to form the epiblast and maintain pluripotency in the bovine embryo. Mol. Reprod. Dev., 87: 152–160.
- Pan G., Thomson J. A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Research., 17: 42–49.
- Park I.-H., Zhao R., West J. A., Yabuuchi A., Huo H., Ince T. A., Lerou P. H., Lensch M. W., Daley G. Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature., 451: 141–146.
- Parsons X. H. (2012). The dynamics of global chromatin remodeling are pivotal for tracking the normal pluripotency of human embryonic stem cells. Anatomy & Physiology: Current Research.
- Pieri N. C. G., de Souza A. F., Botigelli R. C., Pessôa L. V. de F., Recchia K., Machado L. S., Glória M. H., de Castro R. V. G., Leal D. F., Fantinato Neto P., et al. (2022). Porcine primordial germ cell-like cells generated from induced pluripotent stem cells under different culture conditions. Stem Cell Rev. Rep., 1–18.
- Prasad A., Teh D. B. L., Shah Jahan F. R., Manivannan J., Chua S. M., All A. H. (2017). Direct conversion through trans-differentiation: Efficacy and challenges. Stem Cells Transl. Med., 6: 214–224.
- Pukazhenthi B. S., Wildt D. E. (2003). Which reproductive technologies are most relevant to studying, managing and conserving wildlife? Reprod. Fertil. Dev., 16: 33–46.
- Qiu C., Ma Y., Wang J., Peng S., Huang Y. (2010). Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res., 38: 1240–1248.
- Raab S., Klingenstein M., Liebau S., Linta L. (2014). A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int., 2014: 768391.
- Rajabzadeh N., Fathi E., Farahzadi R. (2019). Stem cell-based regenerative medicine. Stem Cell Investig., 6.
- Reik W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature., 447: 425–432.
- Renzi S., Riccò S., Dotti S., Sesso L., Grolli S., Cornali M., Carlin S., Patruno M., Cinotti S., Ferrari M. (2013). Autologous bone marrow mesenchymal stromal cells for regeneration of injured equine ligaments and tendons: A clinical report. Res. Vet. Sci., 95: 272–277.
- Rizos D., Clemente M., Bermejo-Alvarez P., De la Fuente J., Lonergan P., Gutiérrez-Adán A. (2008). Consequences of in vitro culture conditions on embryo development and quality. Reprod. Domest. Anim., 43: 44–50.
- Rodda D. J., Chew J.-L., Lim L.-H., Loh Y.-H., Wang B., Ng H.-H., Robson P. (2005). Transcriptional regulation of Nanog by OCT4 and SOX2. J. Biol. Chem., 280: 24731–24737.
- Rossetti C., Genualdo V., Incarnato D., Mottola F., Perucatti A., Pauciullo A. (2022). State of the art on the physical mapping of the Y-chromosome in the Bovidae and comparison with other species—A review. Anim. Biosci., 35: 1289.
- Saitou M., Hayashi K. (2021). Mammalian in vitro gametogenesis. Science., 374: eaaz6830.
- Sandmaier S. E., Nandal A., Powell A., Garrett W., Blomberg L., Donovan D. M., Talbot N., Telugu B. P. (2015). Generation of induced pluripotent stem cells from domestic goats. Mol. Reprod. Dev., 82: 709–721.
- Satija N. K., Singh V. K., Verma Y. K., Gupta P., Sharma S., Afrin F., Sharma M., Sharma P.,Tripathi R., Gurudutta G. (2009). Mesenchymal stem cell-based therapy: A new paradigm in regenerative medicine. J. Cell. Mol. Med., 13: 4385–4402.
- Scarfone R. A., Pena S. M., Russell K. A., Betts D. H., Koch T. G. (2020). The use of induced pluripotent stem cells in domestic animals: A narrative review. BMC Vet. Res., 16: 1–18.
- Schmidt R., Plath K. (2012). The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biol., 13: 1–11.
- Segunda M. N., Díaz C., Torres C. G., Parraguez V. H., De los Reyes M., Peralta O. A. (2024). Bovine Peripheral Blood-Derived Mesenchymal Stem Cells (PB-MSCs) and Spermatogonial Stem Cells (SSCs) Display Contrasting Expression Patterns of Pluripotency and Germ Cell Markers under the Effect of Sertoli Cell Conditioned Medium. Animals., 14: 803.
- Seita Y., Cheng K., McCarrey J. R., Yadu N., Cheeseman I. H., Bagwell A., Ross C. N., Toro I. S., Yen L.-H., Vargas S. (2023). Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells. Elife., 12: e82263.
- Sharma R., Livesey M. R., Wyllie D. J., Proudfoot C., Whitelaw C. B. A., Hay D. C., Donadeu F. X. (2014). Generation of functional neurons from feeder-free, keratinocyte-derived equine induced pluripotent stem cells. Stem Cells Dev., 23: 1524–1534.
- Shirasawa A., Hayashi M., Shono M., Ideta A., Yoshino T., Hayashi K. (2024). Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle. J. Reprod. Dev., 70: 82–95.
- Singh V. K., Kumar N., Kalsan M., Saini A., Chandra R. (2015). Mechanism of induction: Induced pluripotent stem cells (iPSCs). J. Stem Cells., 10: 43.
- Smith L. C., Bordignon V., Babkine M., Fecteau G., Keefer C. (2000). Benefits and problems with cloning animals. Can. Vet. J., 41: 919.
- Spinelli V., Guillot P. V., De Coppi P. (2013). Induced pluripotent stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis., 9: 101–110.
- Spitzhorn L.-S., Megges M., Wruck W., Rahman M. S., Otte J., Degistirici Ö., Meisel R.,
- Sorg R. V., Oreffo R. O., Adjaye J. (2019). Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Res. Ther., 10: 1–18. Stadtfeld M., Nagaya M., Utikal J., Weir G., Hochedlinger K. (2008). Induced pluripotent stem cells generated without viral integration. Science., 322: 945–949.
- Streckfuss-Bömeke K., Wolf F., Azizian A., Stauske M., Tiburcy M., Wagner S., Hübscher D., Dressel R., Chen S., Jende J., & others. (2013). Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur. Heart J., 34: 2618–2629.
- Takahashi K., Yamanaka S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell., 126: 663–676.
- Tan Y., Xue Y., Song C., Grunstein M. (2013). Acetylated histone H3K56 interacts with Oct4 to promote mouse embryonic stem cell pluripotency. Proc. Natl. Acad. Sci., 110: 11493–11498.
- Tedesco F. S., Gerli M. F., Perani L., Benedetti S., Ungaro F., Cassano M., Antonini S., Tagliafico E., Artusi V., Longa E., & others. (2012). Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci. Transl. Med., 4: 140ra89-140ra89.
- Tonamo A. (2015). Review of current status of animal biotechnology and options for improving animal production in developing countries. Adv. Life Sci. Tech., 38: 29–39.
- Tsukamoto M., Kimura K., Yoshida T., Tanaka M., Kuwamura M., Ayabe T., Ishihara G., Watanabe K., Okada M., Iijima M., & others. (2024). Generation of canine induced pluripotent stem cells under feeder-free conditions using Sendai virus vector encoding six canine reprogramming factors. Stem Cell Rep., 19: 141–157.
- Tsukamoto M., Nishimura T., Yodoe K., Kanegi R., Tsujimoto Y., Alam M. E., Kuramochi M., Kuwamura M., Ohtaka M., Nishimura K., & others. (2018). Generation of footprint-free canine induced pluripotent stem cells using auto-erasable Sendai virus vector. Stem Cells Dev., 27: 1577–1586.
- Ulloa-Montoya F., Verfaillie C. M., Hu W. (2005). Culture systems for pluripotent stem cells. Journal of bioscience and bioengineering., 100: 12–27.
- Vajta G., Rienzi L., Cobo A., Yovich J. (2010). Embryo culture: Can we perform better than nature? Reproductive biomedicine online., 20: 453–469.
- Varlakhanova N. V., Cotterman R. F., deVries W. N., Morgan J., Donahue L. R., Murray S., Knowles B. B., Knoepfler P. S. (2010). Myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation., 80: 9–19.
- Verma R., Liu J., Holland M. K., Temple-Smith P., Williamson M., Verma P. J. (2013). Nanog is an essential factor for induction of pluripotency in somatic cells from endangered felids. BioResearch Open Access., 2: 72–76.
- Wang H., Xiang J., Zhang W., Li J., Wei Q., Zhong L., Ouyang H., Han J. (2016). Induction of germ cell-like cells from porcine induced pluripotent stem cells. Scientific reports., 6: 27256.
- Wang H., Yang Y., Liu J., Qian L. (2021). Direct cell reprogramming: Approaches, mechanisms and progress. Nature Reviews Molecular Cell Biology., 22: 410–424.
- Wang L., Su Y., Huang C., Yin Y., Chu A., Knupp A., Tang Y. (2019). NANOG and LIN28 dramatically improve human cell reprogramming by modulating LIN41 and canonical WNT activities. Biology open., 8: bio047225.
- Wang L., Zhu M., Guo Q., Fan X., Lu Y., Zhu S., Wang Y., Huang Y., Wang Z. (2012). Comparing the reprogramming efficiency of mouse embryonic fibroblasts, mouse bone marrow mesenchymal stem cells and bone marrow mononuclear cells to iPSCs. In Vitro Cellular & Developmental Biology-Animal., 48: 236–243.
- Wang S., Wang S. S., Wu D., Lin Y., Ku C., Wu C., Chai C., Lee J., Tsai E., Lin C.-L., & others. (2013). Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell death & disease., 4: e907–e907.
- Weeratunga P., Shahsavari A., Ovchinnikov D. A., Wolvetang E. J., Whitworth D. J. (2018). Induced pluripotent stem cells from a marsupial, the tasmanian devil (Sarcophilus harrisii): Insight into the evolution of mammalian pluripotency. Stem Cells and Development., 27: 112–122.
- Wei Z., Gao F., Kim S., Yang H., Lyu J., An W., Wang K., Lu W. (2013). Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell stem cell., 13: 36–47.
- Wesevich V. G., Arkfeld C., Seifer D. B. (2023). In vitro gametogenesis in oncofertility: A review of its potential use and present-day challenges in moving toward fertility preservation and restoration. Journal of Clinical Medicine., 12: 3305.
- Whitworth D. J., Limnios I. J., Gauthier M.-E., Weeratunga P., Ovchinnikov D. A., Baillie G., Grimmond S. M., Graves J. A. M., Wolvetang E. J. (2019). Platypus induced pluripotent stem cells: The unique pluripotency signature of a monotreme. Stem Cells and Development., 28: 151–164.
- Wu Y., Wang C., Fan X., Ma Y., Liu Z., Ye X., Shen C., Wu C. (2024). The impact of induced pluripotent stem cells in animal conservation. Veterinary Research Communications., 48: 649–663.
- Wu Z., Chen J., Ren J., Bao L., Liao J., Cui C., Rao L., Li H., Gu Y., Dai H., & others. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of molecular cell biology., 1: 46–54.
- Wuputra K., Ku C.-C., Wu D.-C., Lin Y.-C., Saito S., Yokoyama K. K. (2020). Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. Journal of Experimental & Clinical Cancer Research., 39: 1–24.
- Xiang J., Wang H., Zhang Y., Wang J., Liu F., Han X., Lu Z., Li C., Li Z., Gao Y., & others. (2021). LCDM medium supports the derivation of bovine extended pluripotent stem cells with embryonic and extraembryonic potency in bovine–mouse chimeras from iPSCs and bovine fetal fibroblasts. The FEBS journal., 288: 4394–4411.
- Yan H.-C., Li L., Liu J.-C., Wang Y.-F., Liu X.-L., Ge W., Dyce P. W., Li L., Sun X.-F., Shen W., & others. (2019). RA promotes proliferation of primordial germ cell-like cells differentiated from porcine skin-derived stem cells. Journal of Cellular Physiology., 234: 18214–18229.
- Yoshino T., Suzuki T., Nagamatsu G., Yabukami H., Ikegaya M., Kishima M., Kita H., Imamura T., Nakashima K., Nishinakamura R. (2021). Generation of ovarian follicles from mouse pluripotent stem cells. Science., 373: eabe0237.
- Yu J., Vodyanik M. A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J. L., Tian S., Nie J., Jonsdottir G. A., Ruotti V., Stewart R., & others. (2007). Induced pluripotent stem cell lines derived from human somatic cells. science., 318: 1917–1920.
- Yu L., Wei Y., Sun H.-X., Mahdi A. K., Arteaga C. A. P., Sakurai M., Schmitz D. A., Zheng C., Ballard E. D., Li J., & others. (2021). Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell stem cell., 28: 550–567.
- Zhang G., Xie X.-X., Zhang S.-E., Zhang F.-L., Li C.-X., Qiao T., Dyce P. W., Feng X.-L., Lin W.-B., Sun Q.-C., & others. (2023). Induced differentiation of primordial germ cell like cells from SOX9+ porcine skin derived stem cells. Theriogenology., 212: 129–139.
- Zhao Y., Zhao T., Guan J., Zhang X., Fu Y., Ye J., Zhu J., Meng G., Ge J., Yang S., & others. (2015). A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming. Cell., 163: 1678–1691.
- Zheng K., Wu X., Kaestner K. H., Wang P. J. (2009). The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC developmental biology., 9: 1–11.
- Zhong C., Liu M., Pan X., Zhu H. (2022). Tumorigenicity risk of iPSCs in vivo: Nip it in the bud. Precision Clinical Medicine., 5: pbac004.
- Zhong H. (2024). Advancements in Induced Pluripotent Stem Cell Reprogramming Methods. Zhou H., Wu S., Joo J. Y., Zhu S., Han D. W., Lin T., Trauger S., Bien G., Yao S., Zhu Y., & others. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell stem cell., 4: 381–384.
- Zhou Q., Wang M., Yuan Y., Wang X., Fu R., Wan H., Xie M., Liu M., Guo X., Zheng Y. (2016). Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell stem cell., 18: 330–340.
- Zvick J., Tarnowska-Sengül M., Ghosh A., Bundschuh N., Gjonlleshaj P., Hinte L. C., Trautmann C. L., Noé F., Qabrati X., Domenig S. A., & others. (2022). Exclusive generation of rat spermatozoa in sterile mice utilizing blastocyst complementation with pluripotent stem cells. Stem Cell Reports., 17: 1942–1958.