Have a personal or library account? Click to login
Monocular 3D Object Localization Using 2D Estimates for Industrial Robot Vision System Cover

Monocular 3D Object Localization Using 2D Estimates for Industrial Robot Vision System

Open Access
|Sep 2025

References

  1. M. Salah, A. Ayyad, M. Humais, D. Gehrig, A. Abusafieh, L. Seneviratne, D. Scaramuzza, and Y. Zweiri, “E-calib: A fast, robust and accurate calibration toolbox for event cameras”, IEEE Transactions on Image Processing, vol. 33, 2024, 3977– 3990, doi: 10.1109/TIP.2024.3410673.
  2. Y. Cai, F. Wang, X. Wang, S. Li, Y. Wang, J. Yang, T. Yan, X. Zhan, F. Wang, R. Cheng, et al., “Broad-band visual adaption and image recognition in a monolithic neuromorphic machine vision system”, Advanced Functional Materials, vol. 33, no. 5, 2023, 2212917, doi: 10.1002/adfm.202 212917.
  3. M. Salah, M. Chehadah, M. Humais, M. Wahbah, A. Ayyad, R. Azzam, L. Seneviratne, and Y. Zweiri, “A neuromorphic vision-based measurement for robust relative localization in future space exploration missions”, IEEE Transactions on Instrumentation and Measurement, vol. 73, 2022, 1–12, doi: 10.1109/TIM.2022.3217513.
  4. L.-E. Montoya-Cavero, R. D. de León Torres, A. Gómez-Espinosa, and J. A. E. Cabello, “Vision systems for harvesting robots: Produce detection and localization”, Computers and electronics in agriculture, vol. 192, 2022, 106562, doi: 10.1 016/j.compag.2021.106562.
  5. N. Robinson, B. Tidd, D. Campbell, D. Kulić, and P. Corke, “Robotic vision for human-robot interaction and collaboration: A survey and systematic review”, ACM Transactions on Human-Robot Interaction, vol. 12, no. 1, 2023, 1–66, doi: 10.1 016/j.compag.2021.106562.
  6. P. Rosenberger, A. Cosgun, R. Newbury, J. Kwan, V. Ortenzi, P. Corke, and M. Grafinger, “Object-independent human-to-robot handovers using real time robotic vision”, IEEE Robotics and Automation Letters, vol. 6, no. 1, 2020, 17–23, doi: 10.1109/LRA.2020.3026970.
  7. G. D’Emilia and D. Di Gasbarro, “Review of techniques for 2d camera calibration suitable for industrial vision systems”. In: Journal of Physics: Conference Series, 2017, 012030, doi: 10.1088/1742-6596/841/1/012030.
  8. Y.-J. Zhang. “Camera calibration”. In: 3-D Computer Vision: Principles, Algorithms and Applications, 37–65. Springer, 2023.
  9. C. Ricolfe-Viala and A. Esparza, “The influence of autofocus lenses in the camera calibration process”, IEEE Transactions on Instrumentation and Measurement, vol. 70, 2021, 1–15, doi: 10.1109/TIM.2021.3055793.
  10. J.-H. Chuang, C.-H. Ho, A. Umam, H.-Y. Chen, J.-N. Hwang, and T.-A. Chen, “Geometry-based camera calibration using closed-form solution of principal line”, IEEE Transactions on Image Processing, vol. 30, 2021, 2599–2610, doi: 10.1109/TIP.20 20.3048684.
  11. S.-E. Lee, K. Shibata, S. Nonaka, S. Nobuhara, and K. Nishino, “Extrinsic camera calibration from a moving person”, IEEE Robotics and Automation Letters, vol. 7, no. 4, 2022, 10344–10351, doi: 10.1109/LRA.2022.3192629.
  12. B. Chen, Y. Liu, and C. Xiong, “Automatic checker-board detection for robust camera calibration”. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), 2021, 1–6, doi: 10.110 9/ICME51207.2021.9428389.
  13. S. Liang and Y. Zhao, “Common pole-polar and common tangent properties of dual coplanar circles and their application in camera calibration”, Multimedia Tools and Applications, vol. 83, no. 1, 2024, 381–401, doi: 10. 1007/s 11042-023-15684-4.
  14. S. Liang and Y. Zhao, “Camera calibration based on the common pole-polar properties between two coplanar circles with various positions”, Applied Optics, vol. 59, no. 17, 2020, 5167–5178, doi: 10.1364/AO.388109.
  15. Y. Xie, R. Shao, P. Guli, B. Li, and L. Wang, “Infrastructure based calibration of a multi-camera and multi-lidar system using apriltags”. In: 2018 IEEE Intelligent Vehicles Symposium (IV), 2018, 605– 610, doi: 10.1109/IVS.2018.8500646.
  16. A. Wu, H. Xiao, and F. Zeng, “A camera calibration method based on opencv”. In: Proceedings of the 4th International Conference on Intelligent Information Processing, 2019, 320–324, doi: 10.1145/3378065.3378127.
  17. A. Fetić, D. Jurić, and D. Osmanković, “The procedure of a camera calibration using camera calibration toolbox for matlab”. In: 2012 Proceedings of the 35th International Convention MIPRO, 2012, 1752–1757.
  18. C. B. Duane, “Close-range camera calibration”, Photogramm. Eng, vol. 37, no. 8, 1971, 855–866.
  19. J. Fryer, T. Clarke, and J. Chen, “Lens distortion for simple c-mount lenses”, International Archives of Photogrammetry and remote sensing, vol. 30, 1994, 97–101.
  20. M.-T. Lu and J.-H. Chuang, “Fully automatic camera calibration for principal point using flat monitors”. In: 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, 3154– 3158, doi: 10.1109/ICIP.2018.8451222.
  21. R. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses”, IEEE Journal on Robotics and Automation, vol. 3, no. 4, 1987, 323–344, doi: 10.1109/JRA.1987.10871 09.
  22. M. Gašparović and D. Gajski, “Two-step camera calibration method developed for micro uav’s”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 41, 2016, 829–833, doi: 10.5194/ispr s-archives-XLI-B1-829-2016.
  23. X. Chen, R. Fan, J. Wu, X. Song, Q. Liu, Y. Wang, Y. Wang, and B. Tao, “Fourier-transform-based two-stage camera calibration method with simple periodical pattern”, Optics and Lasers in Engineering, vol. 133, 2020, 106121, doi: 10.1016/j. optlaseng.2020.106121.
  24. Y. I. Abdel-Aziz, H. M. Karara, and M. Hauck, “Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry”, Photogrammetric engineering & remote sensing, vol. 81, no. 2, 2015, 103–107, doi: 10.14358/PERS.81.2.103.
  25. Z. Zhao, D. Ye, X. Zhang, G. Chen, and B. Zhang, “Improved direct linear transformation for parameter decoupling in camera calibration”, Algorithms, vol. 9, no. 2, 2016, 31, doi: 10.3390/a9020031.
  26. F. Barone, M. Marrazzo, and C. J. Oton, “Camera calibration with weighted direct linear transformation and anisotropic uncertainties of image control points”, Sensors, vol. 20, no. 4, 2020, 1175, doi: 10.3390/s20041175.
  27. Z. Shi, Y. Shang, X. Zhang, and G. Wang, “Dlt-lines based camera calibration with lens radial and tangential distortion”, Experimental Mechanics, vol. 61, no. 8, 2021, 1237–1247, doi: 10.1007/s11340-021-00726-5.
  28. Z. Zhang, “Flexible camera calibration by viewing a plane from unknown orientations”. In: Proceedings of the seventh ieee international conference on computer vision, 1999, 666–673, doi: 10.110 9/ICCV.1999.791289.
  29. T. H. M. Siddique, Y. Rehman, T. Rafiq, M. Z. Nisar, M. S. Ibrahim, and M. Usman, “3d object localization using 2d estimates for computer vision applications”. In: 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC), 2021, 1–6, doi: 10.1109/MAJICC 53071.2021.9526270.
  30. X. H. Van and N. Do, “An efficient regression method for 3d object localization in machine vision systems”, IAES International Journal of Robotics and Automation, vol. 11, no. 2, 2022, 111, doi: 10.11591/ijra.v11i2.pp111-121.
  31. R. L. Van Hook. A Comparison of Monocular Camera Calibration Techniques. PhD thesis, Wright State University, 2014.
  32. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection”. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 779–788.
  33. J. Redmon and A. Farhadi, “Yolov3: An incremental improvement”, arXiv preprint arXiv:1804.02767, 2018.
  34. R. Girshick, “Fast r-cnn”. In: Proceedings of the IEEE international conference on computer vision, 2015, 1440–1448.
  35. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv preprint arXiv:1704.04861, 2017.
  36. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection”, arXiv preprint arXiv:2004.10934, 2020.
  37. C. Lyu, W. Zhang, H. Huang, Y. Zhou, Y. Wang, Y. Liu, S. Zhang, and K. Chen, “Rtmdet: An empirical study of designing real-time object detectors”, arXiv preprint arXiv:2212.07784, 2022.
  38. C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2023, 7464–7475.
  39. G. Jocher, A. Chaurasia, and J. Qiu. “Ultralytics yolov8”, January 2023.
  40. G. Jocher. “Ultralytics yolov5”, 2020.
  41. R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, 580–587.
DOI: https://doi.org/10.14313/jamris-2025-025 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 53 - 65
Submitted on: Jun 13, 2024
Accepted on: Sep 13, 2024
Published on: Sep 10, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Thanh Nguyen Canh, Du Trinh Ngoc, Xiem HoangVan, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.