Have a personal or library account? Click to login
The Design Of 3D-Printed Open Bearings For Human Assisting Robots Cover
Open Access
|Sep 2025

References

  1. “F3d nanocarbon (pa12 + cf) datasheet”. https://f3dfilament.com/pl/p/file/ead10b05f6991ab794987ac12af2a24a/NanoCarbon.pdf. Last accessed: 10.09.2024.
  2. “Iglidur i190-pf datasheet”. https://igus.widen.net/content/kjzmueotq9/original/3DP_DS_igli dur_i190_product_data_sheet_EN_IA_1.pdf. Last accessed: 10.09.2024.
  3. O. Abdulhameed, A. Al-Ahmari, W. Ameen, and S. H. Mian, “Additive manufacturing: Challenges, trends, and applications”, Advances in Mechanical Engineering, vol. 11, no. 2, 2019, 1687814018822880.
  4. A. Awad, F. Fina, A. Goyanes, S. Gaisford, and A. W. Basit, “3d printing: Principles and pharmaceutical applications of selective laser sintering”, International Journal of Pharmaceutics, vol. 586, 2020, 119594.
  5. S. Bai, G. S. Virk, and T. Sugar, Wearable exoskeleton systems: Design, control and applications, Institution of Engineering and Technology, 2018.
  6. K. Batkuldinova, A. Abilgaziyev, E. Shehab, and M. H. Ali, “The recent development of 3d printing in developing lower-leg exoskeleton: A review”, Materials Today: Proceedings, vol. 42, 2021, 1822–1828.
  7. A. Batogolowska and J. Slowikowski, “Atlas antropometryczny doroslej ludności polski dla potrzeb projektowania”, Instytut Wzornictwa Przemyslowego, Warszawa, 1998.
  8. W. Cooke, R. Anne Tomlinson, R. Burguete, D. Johns, and G. Vanard, “Anisotropy, homogeneity and ageing in an sls polymer”, Rapid Prototyping Journal, vol. 17, no. 4, 2011, 269–279.
  9. J. Cornejo, J. A. Cornejo-Aguilar, M. Vargas, C. G. Helguero, R. Milanezi de Andrade, S. Torres-Montoya, J. Asensio-Salazar, A. Rivero Calle, J. Martínez Santos, A. Damon, et al., “Anatomical engineering and 3d printing for surgery and medical devices: International review and future exponential innovations”, BioMed research international, vol. 2022, 2022.
  10. G. Ćwikła, C. Grabowik, K. Kalinowski, I. Paprocka, and P. Ociepka, “The influence of printing parameters on selected mechanical properties of fdm/fff 3d-printed parts”. In: IOP conference series: materials science and engineering, vol. 227, no. 1, 2017, 012033.
  11. M. Dodig, “Models and modelling of dynamic moments of inertia of human body”, International Journal of Sports Science, vol. 6, no. 6, 2016, 247–256.
  12. A. M. Dollar and H. Herr, “Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art”, IEEE Transactions on robotics, vol. 24, no. 1, 2008, 144–158.
  13. P. Dudek, “Fdm 3d printing technology in manufacturing composite elements”, Archives of metallurgy and materials, vol. 58, no. 4, 2013, 1415–1418.
  14. P. Falkowski, “An optimisation problem for exoskeleton-aided functional rehabilitation of an upper extremity”. In: IOP Conference Series: Materials Science and Engineering, vol. 1239, no. 1, 2022, 012012.
  15. P. Falkowski, “Predicting dynamics of a rehabilitation exoskeleton with free degrees of freedom”. In: Conference on Automation, 2022, 223–232.
  16. P. Falkowski, “A numerical algorithm for optimal selection of the driving mechanisms for exoreha exoskeleton”. In: 2024 10th International Conference on Mechatronics and Robotics Engineering (ICMRE), 2024, 149–154.
  17. P. Falkowski and K. Jeznach, “Simulation of a control method for active kinesiotherapy with an upper extremity rehabilitation exoskeleton without force sensor”, Journal of NeuroEngineering and Rehabilitation, vol. 21, no. 1, 2024, 22.
  18. P. Falkowski, T. Osiak, J. Wilk, N. Prokopiuk, B. Leczkowski, Z. Pilat, and C. Rzymkowski, “Study on the applicability of digital twins for home remote motor rehabilitation”, Sensors, vol. 23, no. 2, 2023, 911.
  19. P. Falkowski, C. Rzymkowski, and Z. Pilat, “Analyzis of rehabilitation systems in regards to requirements towards remote home rehabilitation devices”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 17, no. 2, 2023, 61–73.
  20. S. Fox, O. Aranko, J. Heilala, and P. Vahala, “Exoskeletons: Comprehensive, comparative and critical analyses of their potential to improve manufacturing performance”, Journal of Manufacturing Technology Management, vol. 31, no. 6, 2019, 1261–1280.
  21. X. Jin, Y. Cai, A. Prado, and S. K. Agrawal, “Effects of exoskeleton weight and inertia on human walking”. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, 1772–1777.
  22. A. Kafle, E. Luis, R. Silwal, H. M. Pan, P. L. Shrestha, and A. K. Bastola, “3d/4d printing of polymers: Fused deposition modelling (fdm), selective laser sintering (sls), and stereolithography (sla)”, Polymers, vol. 13, no. 18, 2021, 3101.
  23. K. Kiguchi and Y. Hayashi, “An emg-based control for an upper-limb power-assist exoskeleton robot”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, 2012, 1064–1071.
  24. R. B. Kristiawan, F. Imaduddin, D. Ariawan, Ubaidillah, and Z. Arifin, “A review on the fused deposition modeling (fdm) 3d printing: Filament processing, materials, and printing parameters”, Open Engineering, vol. 11, no. 1, 2021, 639–649.
  25. J.-P. Kruth, X. Wang, T. Laoui, and L. Froyen, “Lasers and materials in selective laser sintering”, Assembly Automation, vol. 23, no. 4, 2003, 357–371.
  26. J. Li and H. Tanaka, “Feasibility study applying a parametric model as the design generator for 3d–printed orthosis for fracture immobilization”, 3D printing in medicine, vol. 4, 2018, 1–15.
  27. H. S. Lo and S. Q. Xie, “Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects”, Medical engineering & physics, vol. 34, no. 3, 2012, 261–268.
  28. J. Mieloszyk, A. Tarnowski, M. Kowalik, R. Perz, and W. Rzadkowski, “Preliminary design of 3d printed fittings for uav”, Aircraft Engineering and Aerospace Technology, vol. 91, no. 5, 2019, 756–760.
  29. F. Molteni, G. Gasperini, G. Cannaviello, and E. Guanziroli, “Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review”, PM&R, vol. 10, no. 9, 2018, S174–S188.
  30. J. C. Perry, J. Rosen, and S. Burns, “Upper-limb powered exoskeleton design”, IEEE/ASME transactions on mechatronics, vol. 12, no. 4, 2007, 408–417.
  31. Y. Shen, P. W. Ferguson, and J. Rosen, “Upper limb exoskeleton systems—overview”, Wearable Robotics, 2020, 1–22.
  32. C. Shirota, J. Jansa, J. Diaz, S. Balasubramanian, S. Mazzoleni, N. A. Borghese, and A. Melendez-Calderon, “On the assessment of coordination between upper extremities: towards a common language between rehabilitation engineers, clinicians and neuroscientists”, Journal of neuro engineering and rehabilitation, vol. 13, 2016, 1–14.
  33. R. Soltani-Zarrin, A. Zeiaee, R. Langari, and R. Tafreshi, “Challenges and opportunities in exoskeleton-based rehabilitation”, arXiv preprint arXiv:1711.09523, 2017.
  34. R. Szczesiak, M. Kowalik, M. Cader, and P. Pyrzanowski, “Parametric numerical model for predicting mechanical properties of structures made with fdm technology from polymeric materials (pol. parametryczny model numeryczny do predykcji właściwości mechanicznych struktur wytwarzanych w technologii fdm z materiałów polimerowych)”, Polimery, vol. 63, no. 9, 2018, 626–632.
  35. J. Tarbit, N. Hartley, and J. Previte, “Exoskeletons at your service: a multi-disciplinary structured literature review”, Journal of Services Marketing, vol. 37, no. 3, 2023, 313–339.
  36. J. Wang, X. Li, T.-H. Huang, S. Yu, Y. Li, T. Chen, A. Carriero, M. Oh-Park, and H. Su, “Comfort-centered design of a lightweight and backdrivable knee exoskeleton”, IEEE Robotics and Automation Letters, vol. 3, no. 4, 2018, 4265–4272.
  37. Z. Wang and A. Sobey, “A comparative review between genetic algorithm use in composite optimisation and the state-of-the-art in evolutionary computation”, Composite Structures, vol. 233, 2020, 111739.
  38. P. Wu, J. Wang, and X. Wang, “A critical review of the use of 3-d printing in the construction industry”, Automation in Construction, vol. 68, 2016, 21–31.
  39. R. Zaldivar, D. Witkin, T. McLouth, D. Patel, K. Schmitt, and J. Nokes, “Influence of processing and orientation print effects on the mechanical and thermal behavior of 3d-printed ultem® 9085 material”, Additive Manufacturing, vol. 13, 2017, 71–80.
  40. C. Zhang, Y. Li, W. Kang, X. Liu, and Q. Wang, “Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices”, SusMat, vol. 1, no. 1, 2021, 127–147.
DOI: https://doi.org/10.14313/jamris-2025-021 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 13 - 24
Submitted on: Apr 24, 2024
Accepted on: Sep 10, 2024
Published on: Sep 10, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Piotr Falkowski, Bazyli Leczkowski, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.