Have a personal or library account? Click to login
The Design Of 3D-Printed Open Bearings For Human Assisting Robots Cover
Open Access
|Sep 2025

Figures & Tables

Figure 1.

CAD model of the ExoReha upper extremity exoskeleton
CAD model of the ExoReha upper extremity exoskeleton

Figure 2.

ExoReha kinematics model
ExoReha kinematics model

Figure 3.

Initial open bearing design
Initial open bearing design

Figure 4.

Exoskeleton multibody model for dynamics analysis
Exoskeleton multibody model for dynamics analysis

Figure 5.

Analyzed bearing configurations; from left: -90 deg, 0 deg, and 90 deg
Analyzed bearing configurations; from left: -90 deg, 0 deg, and 90 deg

Figure 6.

The outer part geometry prepared in the SpaceClaim
The outer part geometry prepared in the SpaceClaim

Figure 7.

The inner part geometry prepared in the SpaceClaim
The inner part geometry prepared in the SpaceClaim

Figure 8.

Constraints of the outer part
Constraints of the outer part

Figure 9.

Constraints of the inner part
Constraints of the inner part

Figure 10.

Optimization parameters set
Optimization parameters set

Figure 11.

Outer element average stress equivalent distribution
Outer element average stress equivalent distribution

Figure 12.

Outer element average stress equivalent distribution
Outer element average stress equivalent distribution

Figure 13.

Outer element total deformation distribution
Outer element total deformation distribution

Figure 14.

Outer element total deformation distribution
Outer element total deformation distribution

Figure 15.

Initial model (left) compared with the model after parametric optimization (right) in the same scale
Initial model (left) compared with the model after parametric optimization (right) in the same scale

Figure 16.

Final bearing model
Final bearing model

Figure 17.

Outer element average stress equivalent distribution after parametric optimiation
Outer element average stress equivalent distribution after parametric optimiation

Figure 18.

Outer element average stress equivalent distribution after parametric optimiation
Outer element average stress equivalent distribution after parametric optimiation

Figure 19.

Outer element total deformation distribution after parametric optimiation
Outer element total deformation distribution after parametric optimiation

Figure 20.

Outer element total deformation distribution after parametric optimiation
Outer element total deformation distribution after parametric optimiation

Considered ranges or discrete values of FEM model parameters

P1 [mm]10 – 16
P2 [mm]15 – 20
P3 [mm]26 – 30
P4 [mm]48 – 60
P5 [mm]40 – 50
Material modelIglidur I190-PF/F3D NanoCarbon

Maximum angular velocities which may occur in DOFs

DOFωmax [rpm]
φ123.33
φ221.67
φ321.67
φ423.33
φ513.33

Parameters of finite element models for validation of the design

ElementNo. of elementsNo. of nodes
Inner part658,3871,018,928
Outer part211,159360,405

FEM analysis summary after final design modifications

ElementOuterInner
Max. stress for sliding element [MPa]6.2412.49
Max. stress for main element [MPa]20.5928.50
Max. displacement [mm]0.380.41
Max. cylindrical displacement [mm]0.100.08
Max. back surface displacement [mm]0.12
Min. safety factor4.372.18
Part with the lowest safety factorSlidingSliding

Coordinates of COMs (centers of masses) of the elements in the local coordinate systems (COMq – center of mass along q axis)

BodyCOMxCOMyCOMz
[mm][mm][mm]
11013.4918.01369.0
26705.05734.02448.2
36553.96196.32614.4
410605.038714.737689.3
57627.13805.28066.9
611756.723986.125468.9
R1413000.01861000.02011000.0
R2345000.01504809.01312510.0

Parameters of finite elements models

ElementNo. of elementsNo. of nodes
Inner part161,215240,101
Outer part108,993171,687

Material properties for FEM analysis

MaterialIglidur I190-PFF3D NanoCarbon (PA12 + CF)
E [GPa]1.666.02
v0.3060.306
Yield strength [MPa]27.2598.79
Tensile strength [MPa]36.06130.73

Mass parameters of the multibody model bodies (Iqq – main inertia moment along q axis)

BodyMassIxxIyyIzz
[kg][kg · mm2][kg · mm2][kg · mm2]
10.91013.4918.01369.0
21.36705.05734.02448.2
31.16553.96196.32614.4
42.010605.038714.737689.3
51.27627.13805.28066.9
61.611756.723986.125468.9
R13.0413000.01861000.02011000.0
R22.5345000.01504809.01312510.0

Equivalent load states for the considered combinations of bearing arrangements (DOF column represents the DOF for which the parameters are presented with the configuration in the open bearing by the rotation in degrees, Fq – force along q axis of the global coordinate system, Mq – force along q axis of the global coordinate system)

CaseDOFMy [Nm]Mz [Nm]Fx [N]Fy [N]Fz [N]
1φ3 = —90°-22.9142.41-411.7814.000.67
φ5 = —90°-2.82-29.45-96.72184.9750.72
2φ3 = —90°21.0842.02-406.9113.770.73
φ5 = 0°2.39-3.83-47.23148.7851.64
3φ3 = —90°-22.6342.21-408.2214.200.58
φ5 = 90°3.15-14.59-60.37155.0451.96
4φ3 = 0°-22.8443.02-416.8814.390.77
φ5 = —90°-2.183.00-170.39112.5850.51
5φ3 = 0°22.0642.73-406.0013.670.70
φ5 = 0°2.28-7.382.52101.6447.46
6φ3 = 0°-22.6543.18-405.6214.240.63
φ5 = 90°2.981.83-153.83117.9446.60
7φ3 = 90°21.0341.05-406.3413.580.71
φ5 = 0°1.94-4.11-57.71130.7652.62
8φ3 = 90°-22.7942.68-413.8014.040.71
φ5 = —90°1.06-6.7648.09129.6055.34
9φ3 = 90°-22.0542.62-409.6913.630.55
φ5 = 90°2.57-5.47-148.67115.3151.36

FEM model parameters initial values (input parameters: P1-P5 and Material model, output parameters: maximum stresses and masses of the parts)

P1 [mm]15.0
P2 [mm]20.0
P3 [mm]30.0
P4 [mm]60.0
P5 [mm]50.0
Material modelIglidur I190-PF
Max stress in inner part [MPa]12.68
Max stress in outer part [MPa]9.49
Inner part mass [kg]0.96
Outer part mass [kg]0.85

FEM model parameters final values (input parameters: P1-P5 and Material model, output parameters: maximum stresses and masses of the parts)

P1 [mm]12.8
P2 [mm]15.5
P3 [mm]26.5
P4 [mm]49.3
P5 [mm]40
Material modelNanoCarbon (PA 12 + CF)
Max stress in inner part [MPa]12.9
Max stress in outer part [MPa]25.6
Inner part mass [kg]0.61
Outer part mass [kg]0.48
DOI: https://doi.org/10.14313/jamris-2025-021 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 13 - 24
Submitted on: Apr 24, 2024
Accepted on: Sep 10, 2024
Published on: Sep 10, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Piotr Falkowski, Bazyli Leczkowski, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.