Have a personal or library account? Click to login

Integrating Disturbance Handling into Control Strategies for Swing-up And Stabilization of Rotary Inverted Pendulum

Open Access
|Mar 2025

References

  1. K.-Y. Chou and Y.-P. Chen, “Energy based swingup controller design using phase plane method for rotary inverted pendulum”. In: 2014 13th International Conference on Control Automation Robotics and Vision (ICARCV), vol. 1, no. 1, 2014, 975–979, 10.1109/ICARCV.2014.7064438.
  2. B. A. Elsayed, M. A. Hassan, and S. Mekhilef, “Fuzzy swingingup with sliding mode control for third order cartinverted pendulum system”, International Journal of Control, Automation and Systems, vol. 13, 2015, 238–248, 10.1007/s125 55-014-0033-4.
  3. M. F. Hamza, H. J. Yap, I. A. Choudhury, A. I. Isa, A. Y. Zimit, and T. Kumbasar, “Current development on using rotary inverted pendulum as a benchmark for testing linear and nonlinear control algorithms”, Mechanical Systems and Signal Processing, vol. 116, 2019, 347–369, 10.1016/j. ymssp.2018.06.054.
  4. J. Huang, T. Zhang, Y. Fan, and J.-Q. Sun, “Control of rotary inverted pendulum using model-free backstepping technique”, IEEE Access, vol. 7, 2019, 96965–96973, 10.1109/ACCESS.2019.29 30220.
  5. S. Irfan, A. Mehmood, M. T. Razzaq, and J. Iqbal, “Advanced sliding mode control techniques for inverted pendulum: Modelling and simulation”, Engineering science and technology, an international journal, vol. 21, no. 4, 2018, 753–759, 10.1016/j.jestch.2018.06.010.
  6. A. Kathpal and A. Singla, “Simmechanics™ based modeling, simulation and real-time control of rotary inverted pendulum”. In: 2017 11th International Conference on Intelligent Systems and Control (ISCO), vol. 1, no. 1, 2017, 166–172, 10.1109/ISCO.2017.7855975.
  7. V. Kumar and R. Agarwal, “Modeling and control of inverted pendulum cart system using pid-lqr based modern controller”. In: 2022 IEEE Students Conference on Engineering and Systems (SCES), vol. 1, no. 1, 2022, 01–05, 10.1109/SCES5549 0.2022.9887706.
  8. B. Lima, R. Cajo, V. Huilcapi, and W. Agila, “Modeling and comparative study of linear and nonlinear controllers for rotary inverted pendulum”. In: Journal of Physics: Conference Series, vol. 783, no. 1, 2017, 012047, 10.1088/1742-6596/783/1/012047.
  9. N. J. Mathew, K. K. Rao, and N. Sivakumaran, “Swing up and stabilization control of a rotary inverted pendulum”, IFAC Proceedings Volumes, vol. 46, no. 32, 2013, 654–659, 10.3182/2013 1218-3-IN-2045.00128, 10th IFAC International Symposium on Dynamics and Control of Process Systems.
  10. A. Nagarajan and A. A. Victoire, “Optimization reinforced pid-sliding mode controller for rotary inverted pendulum”, IEEE Access, vol. 11, 2023, 24420–24430, 10.1109/ACCESS.2023.3254591.
  11. A. Nasir, R. Ismail, and M. Ahmad, “Performance comparison between sliding mode control (smc) and pd-pid controllers for a nonlinear inverted pendulum system”, World Academy of Science, Engineering and Technology, vol. 71, 2010, 400–405, 10.5281/zenodo.1055423.
  12. S. R. Nekoo, “Digital implementation of a continuous-time nonlinear optimal controller: An experimental study with real-time computations”, ISA Transactions, vol. 101, 2020, 346–357, 10.1016/j.isatra.2020.01.020.
  13. T.-V.-A. Nguyen, B.-T. Dong, and N.-T. BUI, “Enhancing stability control of inverted pendulum using takagi–sugeno fuzzy model with disturbance rejection and input–output constraints”, Scientific Reports, vol. 13, no. 1, 2023, 14412.
  14. V.-A. Nguyen, D.-B. Pham, D.-T. Pham, N.-T. Bui, and Q.-T. Dao, “A hybrid energy sliding mode controller for the rotary inverted pendulum”. In: International Conference on Engineering Research and Applications, vol. 602, no. 1, 2022, 34–41, 10.1007/978-3-031-22200-9_4.
  15. L. B. Prasad, B. Tyagi, and H. O. Gupta, “Optimal control of nonlinear inverted pendulum system using pid controller and lqr: performance analysis without and with disturbance input”, International Journal of Automation and Computing, vol. 11, 2014, 661–670, 10.1007/s11633-014-0818-1.
  16. O. Qasem, H. Gutierrez, and W. Gao, “Experimental validation of data-driven adaptive optimal control for continuous-time systems via hybrid iteration: An application to rotary inverted pendulum”, IEEE Transactions on Industrial Electronics, vol. 1, no. 1, 2023, 1–11, 10.1109/TIE.2023.3 292873.
  17. E. Susanto, B. Rahmat, and M. Ishitobi, “Stabilization of rotary inverted pendulum using proportional derivative and fuzzy controls”. In: 2022 9th International Conference on Information Technology, Computer, and Electrical Engineering (ICI-TACEE), vol. 1, no. 1, 2022, 34–37, 10.1109/IC ITACEE55701.2022.9924142.
  18. H. Wang, H. Dong, L. He, Y. Shi, and Y. Zhang, “Design and simulation of lqr controller with the linear inverted pendulum”. In: 2010 international conference on electrical and control engineering, vol. 1, no. 1, 2010, 699–702, 10.1109/iCECE.20 10.178.
  19. L. Wang, H. Ni, W. Zhou, P. M. Pardalos, J. Fang, and M. Fei, “Mbpoa-based lqr controller and its application to the double-parallel inverted pendulum system”, Engineering Applications of Arti-ficial Intelligence, vol. 36, 2014, 262–268, 10.101 6/j.engappai.2014.07.023.
  20. J. Yu and X. Zhang, “The global control of first order rotary parallel double inverted pendulum system”. In: 2021 40th Chinese Control Conference (CCC), vol. 1, no. 1, 2021, 2773–2778, 10.23919/CCC52363.2021.9549400.
  21. J. Zhang, P. Shi, Y. Xia, and H. Yang, “Discrete-time sliding mode control with disturbance rejection”, IEEE Transactions on Industrial Electronics, vol. 66, no. 10, 2019, 7967–7975, 10.1109/TIE.2018.2879309.
DOI: https://doi.org/10.14313/jamris-2025-002 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 7 - 16
Submitted on: Jan 13, 2024
Accepted on: Feb 8, 2024
Published on: Mar 31, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Thi-Van-Anh Nguyen, Ma-Sieu Phan, Quy-Thinh Dao, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.