Have a personal or library account? Click to login
A Robust Path Following Algorithm Based on the Orthogonal Bishop Parametrization for A non–Holonomic Mobile Manipulator Cover

A Robust Path Following Algorithm Based on the Orthogonal Bishop Parametrization for A non–Holonomic Mobile Manipulator

By: Alicja Mazur and  Filip Dyba  
Open Access
|Jun 2025

References

  1. Abadi, A.S.S., Hosseinabadi, P.A., Mekhilef, S. and Ordys, A. (2020). A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems, Archives of Control Sciences 30(3): 599–620, DOI: 10.24425/acs.2020.134679.
  2. Bartoszewicz, A. and Adamiak, K. (2019). A reference trajectory based discrete time sliding mode control strategy, International Journal of Applied Mathematics and Computer Science 29(3): 517–525, DOI: 10.2478/amcs-2019-0038.
  3. Bishop, R.L. (1975). There is more than one way to frame a curve, The American Mathematical Monthly 82(3): 246–251, DOI: 10.2307/2319846.
  4. Campion, G., Bastin, G. and D’Andréa-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Transactions on Robotics and Automation 12: 47–61, DOI: 10.1109/70.481750.
  5. Canudas de Wit, C., Bastin, G. and Siciliano, B. (1996). Theory of Robot Control, 1st edn, Springer, London.
  6. Carroll, D., Köse, E. and Sterling, I. (2013). Improving Frenet’s frame using Bishop’s frame, Journal of Mathematics Research 5: 97–106, DOI:10.5539/jmr.v5n4p97.
  7. Cichella, V., Kaminer, I., Xargay, E., Dobrokhodov, V., Hovakimyan, N., Aguiar, A.P. and Pascoal, A.M. (2012). A Lyapunov-based approach for time-coordinated 3D path-following of multiple quadrotors, Proceedings of the 51st Annual IEEE Conference on Decision and Control, Maui, Hawaii, USA, pp. 1776–1781.
  8. Costa, M.M. and Silva, M.F. (2019). A survey on path planning algorithms for mobile robots, 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Porto, Portugal, pp. 1–7, DOI: 10.1109/ICARSC.2019.8733623.
  9. Dulęba, I. (2000). Modeling and control of mobile manipulators, IFAC Proceedings Volumes 33(27): 447–452, DOI: 10.1016/S1474-6670(17)37970-3.
  10. Dyba, F. (2023). Experimental validation of the non-orthogonal Serret-Frenet parametrization applied to the path following task, Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, Rome, Italy, pp. 608–615, DOI: 10.5220/0012164200003543.
  11. Dyba, F. (2024). Parallel position and orientation control for a redundant manipulator performing the path following task, 13th International Workshop on Robot Motion and Control (RoMoCo), Poznan, Poland, pp. 199–204, DOI: 10.1109/RoMoCo60539.2024.10604337.
  12. Dyba, F. and Mazur, A. (2024). Comparison of curvilinear parametrization methods and avoidance of orthogonal singularities in the path following task, Journal of Automation, Mobile Robotics and Intelligent Systems 17(3): 46–64, DOI: 10.14313/JAMRIS/3-2023/22.
  13. Encarnação, P. and Pascoal, A. (2000). 3D path following for autonomous underwater vehicle, Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 3, Sydney, NSW, Australia, pp. 2977–2982, DOI: 10.1109/CDC.2000.914272.
  14. Frenet, F. (1852). Sur les courbes à double courbure, Journal de Mathématiques Pures et Appliquées, 17: 437–447, http://eudml.org/doc/233946.
  15. Galicki, M. (2006). Adaptive control of kinematically redundant manipulator along a prescribed geometric path, in K. Kozłowski (Ed.), Robot Motion and Control, Lecture Notes in Control and Information Sciences, Vol. 335, Springer, London, pp. 129–139.
  16. Gonçalves, V.M., Adorno, B.V., Crosnier, A. and Fraisse, P. (2020). Stable-by-design kinematic control based on optimization, IEEE Transactions on Robotics 36(3): 644–656, DOI: 10.1109/TRO.2019.2963665.
  17. Gonçalves, V.M., Pimenta, L.C.A., Maia, C.A., Dutra, B.C.O. and Pereira, G.A.S. (2010). Vector fields for robot navigation along time-varying curves in n-dimensions, IEEE Transactions on Robotics 26(4): 647–659, DOI: 10.1109/TRO.2010.2053077.
  18. Hung, N., Rego, F., Quintas, J., Cruz, J., Jacinto, M., Souto, D., Potes, A., Sebastiao, L. and Pascoal, A. (2023). A review of path following control strategies for autonomous robotic vehicles: Theory, simulations, and experiments, Journal of Field Robotics 40(3): 747–779, DOI: 10.1002/rob.22142.
  19. Jafarzadeh, H. and Fleming, C. H. (2018). An exact geometry–based algorithm for path planning, International Journal of Applied Mathematics and Computer Science 28(3): 493–504, DOI: 10.2478/amcs-2018-0038.
  20. Kapitanyuk, Y.A., Proskurnikov, A.V. and Cao, M. (2018). A guiding vector-field algorithm for path-following control of nonholonomic mobile robots, IEEE Transactions on Control Systems Technology 26(4): 1372–1385, DOI: 10.1109/TCST.2017.2705059.
  21. Kozłowski, K. and Pazderski, D. (2004). Modeling and control of a 4-wheel skid-steering mobile robot, International Journal of Applied Mathematics and Computer Science 14(4): 477–496.
  22. Krstić, M., Kanellakopoulos, I. and Kokotović, P.V. (1995). Nonlinear and Adaptive Control Design, Wiley, New York, USA.
  23. Lee, J.M. (1997). Riemannian Manifolds: An Introduction to Curvature, Springer, New York.
  24. Li, X., Zhao, G. and Li, B. (2020). Generating optimal path by level set approach for a mobile robot moving in static/dynamic environments, Applied Mathematical Modelling 85: 210–230, DOI: 10.1016/j.apm.2020.03.034.
  25. Liao, Y.-L., Zhang, M.-J. and Wan, L. (2015). Serret–Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties, Journal of Central South University 22: 214–223, DOI: 10.1007/s11771-015-2512-z.
  26. Liu, H. and Pei, D. (2013). Singularities of a space curve according to the relatively parallel adapted frame and its visualization, Mathematical Problems in Engineering 2013(512020): 1–12, DOI: 10.1155/2013/512020.
  27. Lugo-Cárdenas, I., Salazar, S. and Lozano, R. (2017). Lyapunov based 3D path following kinematic controller for a fixed wing UAV, IFAC-PapersOnLine 50(1): 15946–15951, DOI: 10.1016/j.ifacol.2017.08.1747.
  28. Mazur, A. (2004). Hybrid adaptive control laws solving a path following problem for non-holonomic mobile manipulators, International Journal of Control 77(15): 1297–1306, DOI: 10.1080/0020717042000297162.
  29. Mazur, A. (2010). Trajectory tracking control in workspace-defined tasks for nonholonomic mobile manipulators, Robotica 28(1): 57–68, DOI: 10.1017/S0263574709005578.
  30. Mazur, A. and Dyba, F. (2023). The non-orthogonal serret–frenet parametrization applied to the path following problem of a manipulator with partially known dynamics, Archives of Control Sciences 33(2): 339–370, DOI: 10.24425/acs.2023.146279.
  31. Mazur, A. and Płaskonka, J. (2012). The Serret–Frenet parametrization in a control of a mobile manipulator of (nh, h) type, IFAC Proceedings Volumes 45(22): 405–410, DOI: 10.3182/20120905-3-HR-2030.00069.
  32. Mazur, A., Płaskonka, J. and Kaczmarek, M. (2015). Following 3D paths by a manipulator, Archives of Control Sciences 25(1): 117–133, DOI: 10.1515/acsc-2015-0008.
  33. Mazur, A. and Szakiel, D. (2009). On path following control of nonholonomic mobile manipulators, International Journal of Applied Mathematics and Computer Science 19(4): 561–574.
  34. Micaelli, A. and Samson, C. (1993). Trajectory tracking for unicycle-type and two-steering-wheels mobile robots, Technical Report No. 2097, INRIA, Sophia-Antipolis.
  35. Michałek, M. and Kozłowski, K. (2009). Motion planning and feedback control for a unicycle in a way point following task: The VFO approach, International Journal of Applied Mathematics and Computer Science 19(4): 533–545, DOI: 10.1007/s10846-017-0482-0.
  36. Michałek, M.M. and Gawron, T. (2018). VFO Path following control with guarantees of positionally constrained transients for unicycle-like robots with constrained control input, Journal of Intelligent and Robotic Systems: Theory and Applications 89(1-2): 191 – 210.
  37. Oprea, J. (1997). Differential Geometry and Its Applications, Prentice Hall, Michigan University.
  38. Pepy, R., Kieffer, M. and Walter, E. (2009). Reliable robust path planning with application to mobile robots, International Journal of Applied Mathematics and Computer Science 19(3): 413–424, DOI: 10.2478/v10006-009-0034-2.
  39. Przybylski, M. and Putz, B. (2017). D* Extra Lite: A dynamic A* with search–tree cutting and frontier–gap repairing, International Journal of Applied Mathematics and Computer Science 27(2): 273–290, DOI: 10.1515/amcs-2017-0020.
  40. Rezende, A.M.C., Goncalves, V.M. and Pimenta, L.C.A. (2022). Constructive time-varying vector fields for robot navigation, IEEE Transactions on Robotics 38(2): 852–867, DOI: 10.1109/TRO.2021.3093674.
  41. Selig, J.M. and Wu, Y. (2006). Interpolated rigid-body motions and robotics, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 1086–1091, DOI: 10.1109/IROS.2006.281815.
  42. Serret, J.-A. (1851). Sur quelques formules relatives à la théorie des courbes à double courbure, Journal de Mathématiques Pures et Appliquées, 16: 193–207.
  43. Slotine, J.-J. and Li, W. (1991). Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, N.J.
  44. Soetanto, D., Lapierre, L. and Pascoal, A. (2003). Adaptive, non-singular path-following control of dynamic wheeled robots, Proceedings of the 42nd IEEE International Conference on Decision and Control, Vol. 2, Maui, HI, pp. 1765–1770, DOI: 10.1109/CDC.2003.1272868.
  45. Spong, M. and Vidyasagar, M. (1991). Robot Dynamics and Control, Wiley, New York.
  46. Sun, K. and Liu, X. (2021). Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method, International Journal of Applied Mathematics and Computer Science 31(2): 289–301, DOI: 10.34768/amcs-2021-0019.
  47. Utkin, V.I. (1992). Sliding Modes in Control and Optimization, Springer, Berlin.
  48. Yamamoto, Y. and Yun, X. (1996). Effect of the dynamic interaction on coordinated control of mobile manipulators, IEEE Transactions on Robotics and Automation 12(5): 816–824, DOI: 10.1109/70.538986.
  49. Yao, W., de Marina, H.G., Lin, B. and Cao, M. (2021). Singularity-free guiding vector field for robot navigation, IEEE Transactions on Robotics 37(4): 1206–1221, DOI: 10.1109/TRO.2020.3043690.
DOI: https://doi.org/10.61822/amcs-2025-0015 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 209 - 224
Submitted on: Apr 12, 2024
Accepted on: Jan 10, 2025
Published on: Jun 24, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Alicja Mazur, Filip Dyba, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.