Have a personal or library account? Click to login
A Robust Asymptotic Tracking Controller for an Uncertain 2DOF Underactuated Mechanical System Motivated by a Satellite Attitude Control Problem Cover

A Robust Asymptotic Tracking Controller for an Uncertain 2DOF Underactuated Mechanical System Motivated by a Satellite Attitude Control Problem

Open Access
|Apr 2025

References

  1. Almeida, D., Gamez, C. and Rascon, R. (2015). Robust regulation and tracking control of a class of uncertain 2DOF underactuated mechanical systems, Mathematical Problems in Engineering 2015: 1–11, Article ID: 429476, DOI: 10.1155/2015/429476.
  2. Angeletti, F., Gasbarri, P., Sabatini, M. and Iannelli, P. (2020). Design and performance assessment of a distributed vibration suppression system of a large flexible antenna during attitude manoeuvres, Acta Astronautica 176: 542–557, DOI: 10.1016/j.actaastro.2020.04.015.
  3. Angeletti, F., Iannelli, P., Gasbarri, P. and Sabatini, M. (2021). End-to-end design of a robust attitude control and vibration suppression system for large space smart structures, Acta Astronautica 187: 416–428, DOI: 10.1016/j.actaastro.2021.04.007.
  4. Emirsajłow, Z., Barciński, T. and Bukowiecka, N. (2023). Attitude control of an earth observation satellite with a solar panel, in M. Pawelczyk et al. (Eds), Advanced Contemporary Control, Springer Nature, Cham, pp. 393–402, DOI: 10.1007/978-3-031-35170-9-37.
  5. Francis, B. and Wonham, W. (1975). The internal model principle for linear multivariable regulators, Applied Mathematics and Optimization 2(2): 170–194.
  6. Iannelli, P., Angeletti, F. and Gasbarri, P. (2022). A model predictive control for attitude stabilization and spin control of a spacecraft with a flexible rotating payload, Acta Astronautica 199: 401–411, DOI: 10.1016/j.actaastro.2022.07.024.
  7. Isidori, A., Marconi, L. and Serrani, A. (2003). Robust Autonomous Guidance An Internal Model Approach, Springer, London.
  8. Liu, Y. and Yu, H. (2013). A survey of underactuated mechanical systems, IET Control Theory and Applications 7(7): 921–935, DOI: 10.1049/iet-cta.2012.0505.
  9. MathWorks (2020a). MATLAB Control System Toolbox R2020b, MathWorks, Natick.
  10. MathWorks (2020b). MATLAB Robust Control Toolbox R2020b, MathWorks, Natick.
  11. MathWorks (2020c). MATLAB Symbolic Math Toolbox R2020b, MathWorks, Natick.
  12. Mohsenipour R., Nemati, H., Nasirian, M. and Nia, A.K. (2013). Attitude control of a flexible satellite by using robust control design methods, Intelligent Control and Automation 4(3): 313–326, DOI: 10.4236/ica.2013.43037.
  13. Muñoz-Arias, M. (2019). An energy-based approach to satellite attitude control in presence of disturbances, Proceedings of the 8th European Conference for Aeronautics and Aerospace Sciences (EUCASS), Madrid, Spain, pp. 1–7, DOI: 10.13009/EUCASS2019-1052.
  14. Narkiewicz, J., Grunvald, S. and Sochacki, M. (2024). Attitude control system for an earth observation satellite, Bulletin of the Polish Academy of Sciences: Technical Sciences 72(2): 1–8, DOI: 10.24425/bpasts.2024.148612.
  15. Narkiewicz, J., Sochacki, M. and Zakrzewski, B. (2020). Generic model of a satellite attitude control system, International Journal of Aerospace Engineering 2020(1): 5352019, DOI: 10.1155/2020/5352019.
  16. Ohtani, T., Hamada, Y., Nagashio, T., Kida, T., Mitani, S., Yamaguchi, I., Kasai, T. and Igawa, H. (2011). Robust attitude control using mu-synthesis for the large flexible satellite ETS-VIII, Journal of Space Technology and Science 25(1): 27–40, DOI: 10.1155/2020/5352019.
  17. Ordaz, P., Romero-Trejo, H., Cuvas, C. and Sandre, O. (2024). Dynamic sliding mode control based on a full-order observer: Underactuated electro-mechanical system regulation, International Journal of Applied Mathematics and Computer Science 34(1): 29–43, DOI: 10.61822/amcs-2024-0003.
  18. Saberi, A., Stoorvogel, A. and Sannuti, P. (2000). Control of Linear Systems with Regulation and Input Constraints, Springer, London.
  19. Scherer, C. (2001). Theory of Robust Control, Delft University of Technology, Delft.
  20. Sumithra, S. and Vadivel, S. (2021). An optimal innovation based adaptive estimation Kalman filter for accurate positioning in a vehicular ad-hoc network, International Journal of Applied Mathematics and Computer Science 31(1): 45–57, DOI: 10.34768/amcs-2021-0004.
  21. Wang, L., Li, Z. and Wang, B. (2012). Robust satellite attitude control, in D. Jin and S. Lin (Eds), Advances in Computer Science and Information Engineering, Vol. 1, Springer, Berlin, Heidelberg, pp. 649–654, DOI: 10.1007/978-3-642-30126-1-102.
  22. Wang, Y., Zhang, D. and Dai, G. (2020). Classification of high resolution satellite images using improved U-Net, International Journal of Applied Mathematics and Computer Science 30(3): 399–413, DOI: 10.34768/amcs-2020-0030.
  23. Williams, R. and Lawrence, D. (2007). Linear State-Space Control Systems, Wiley, Hoboken, NJ.
  24. Xie, Y., Huang, H., Hu, Y. and Zhang, G. (2016). Applications of advanced control methods in spacecrafts—Progress, challenges, and future prospects, Frontiers of Information Technology & Electronic Engineering 17(9): 416–428, DOI: 10.1631/FITEE.1601063.
  25. Zhou, K. and Doyle, J. (1998). Essentials of Robust Control, Prentice Hall, Upper Saddle River.
DOI: https://doi.org/10.61822/amcs-2025-0008 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 97 - 116
Submitted on: Mar 11, 2024
Accepted on: Oct 10, 2024
Published on: Apr 1, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Zbigniew Emirsajłow, Tomasz Barciński, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.