References
- 1Cecilio-Fernandes D, Medema H, Collares CF, Schuwirth L, Cohen-Schotanus J, Tio RA. Comparison of formula and number-right scoring in undergraduate medical training: a Rasch model analysis. BMC Medical Education. 2017;17:
192 . DOI: 10.1186/s12909-017-1051-8 - 2Lord FM. Formula scoring and number-right scoring. Journal of Educational Measurement. 1975;12(1):7–11. DOI: 10.1111/j.1745-3984.1975.tb01003.x
- 3Wrigley W, Van Der Vleuten CP, Freeman A, Muijtjens A. A systemic framework for the progress test: Strengths, constraints and issues: AMEE Guide No. 71. Medical Teacher. 2012;34(9):683–97. DOI: 10.3109/0142159X.2012.704437
- 4Ravesloot CJ, Van der Schaaf MF, Muijtjens AMM, Haaring C, Kruitwagen CLJJ, Beek FJA, et al. The don’t know option in progress testing. Advances in Health Sciences Education. 2015;20(5):1325–38. DOI: 10.1007/s10459-015-9604-2
- 5Rowley G, Traub R. Formula scoring, number-right scoring, and test-taking strategy. Journal of Educational Measurement. 1977;14(1). DOI: 10.1111/j.1745-3984.1977.tb00024.x
- 6Edwards W. The theory of decision making. Psychological Bulletin. 1954;51(4):380–417. DOI: 10.1037/h0053870
- 7Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk. Econometrica. 1979;47(2):263–91. DOI: 10.2307/1914185
- 8Fraser C, Beattie M. The impact of risk aversion on formula scoring in multiple-choice tests. Applied Psychological Measurement. 2002;26(3):235–44. DOI: 10.1177/014662102760913645
- 9Banerjee M, Wiegand SA. The impact of formula scoring on ability estimates and validity in computer adaptive testing. Educational Measurement: Issues and Practice. 2010;29(4):17–29. DOI: 10.1111/j.1745-3992.2010.00174
- 10Lord FM, Lord FM. Formula Scoring and Validity. Educational and Psychological Measurement. 1963-12-01;23(4). DOI: 10.1177/001316446302300403
- 11Messick S. Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist. 1995;50(9):741–9. DOI: 10.1037/0003-066X.50.9.741
- 12Kampmeyer D, Matthes J, Herzig S. Lucky guess or knowledge: a cross-sectional study using the Bland and Altman analysis to compare confidence-based testing of pharmacological knowledge in 3rd and 5th year medical students. Advances in Health Sciences Education. 2015;20(2):431–40. DOI: 10.1007/s10459-014-9537-1
- 13Thompson J, Lewis C. Examining guessing behavior and test-wiseness in multiple-choice tests. Applied Measurement in Education. 2007;20(2):135–53. DOI: 10.1207/s15324818ame2002_3
- 14Koriat A. The self-consistency model of subjective confidence. Psychological Review. 2012;119(1):80–113. DOI: 10.1037/a0025648
- 15Muijtjens AM, Mameren HV, Hoogenboom RJ, Evers JL, van der Vleuten CP. The effect of a ‘don’t know’ option on test scores: number-right and formula scoring compared. Medical Education. 1999;33(4):267–75. DOI: 10.1046/j.1365-2923.1999.00292.x
- 16Rowley GL, Traub RE. Formula Scoring, Number-Right Scoring, and Test-Taking Strategy. Journal of Educational Measurement. 1977;14(1):15–22. DOI: 10.1111/j.1745-3984.1977.tb00024.x
- 17Kubinger K, Wolfsbauer C. On the risk of certain psychotechnological response options in multiple-choice tests: Does a particular personality handicap examinees? European Journal of Psychological Assessment. 2010;26(4). DOI: 10.1027/1015-5759/a000040
- 18Budescu D, Bar-Hillel M. To Guess or Not to Guess: A Decision-Theoretic View of Formula Scoring. Journal of Educational Measurement. 1993/12/01;30(4). DOI: 10.1111/j.1745-3984.1993.tb00427.x
- 19van Wijk EV, Donkers J, de Laat PCJ, Meiboom AA, Jacobs B, Ravesloot JH, et al. Computer Adaptive vs. Non-adaptive Medical Progress Testing: Feasibility, Test Performance, and Student Experiences. Perspectives on Medical Education. 2024;13(1). DOI: 10.5334/pme.1345
- 20Chang H-H. Psychometrics behind Computerized Adaptive Testing. Psychometrika. 2015;80(1):1–20. DOI: 10.1007/s11336-014-9401-5
- 21Downing SM. Item response theory: applications of modern test theory in medical education. Medical Education. 2003;37(8):739–45. DOI: 10.1046/j.1365-2923.2003.01587.x
- 22Framework for Undergraduate Medical Education 2021 [updated 2021-08-20T11:17:25 + 02:00; cited July 2023]. Available from:
https://www.nfu.nl/en/themes/professional-future/medicine-programmes/framework-undergraduate-medical-education . - 23Tio RA, Schutte B, Meiboom AA, Greidanus J, Dubois EA, Bremers AJA, et al. The progress test of medicine: the Dutch experience. Perspectives on Medical Education. 2016;5(1):51–5. DOI: 10.1007/S40037-015-0237-1
- 24Traub RE. Classical Test Theory in Historical Perspective. Educational Measurement: Issues and Practice. 2005;16(4):8–14. DOI: 10.1111/j.1745-3992.1997.tb00603.x
- 25Rice N, Pêgo JM, Collares CF, Kisielewska J, Gale T. The development and implementation of a computer adaptive progress test across European countries. Computers and Education: Artificial Intelligence. 2022;3:
100083 . DOI: 10.1016/j.caeai.2022.100083 - 26Warm TA. Weighted likelihood estimation of ability in item response theory. Psychometrika. 1989;54(3):427–50. DOI: 10.1007/BF02294627
- 27van Wijk EV, van Blankenstein FM, Donkers J, Janse RJ, Bustraan J, Adelmeijer LGM, et al. Does ‘summative’ count? The influence of the awarding of study credits on feedback use and test-taking motivation in medical progress testing. Advances in Health Sciences Education. 2024. 2024-03-19. DOI: 10.1007/s10459-024-10324-4
- 28Fraley C, Raftery AE. Model-Based Clustering, Discriminant Analysis, and Density Estimation. Journal of the American Statistical Association. 2002;97(458). DOI: 10.1198/016214502760047131
- 29R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2021 [cited 2024]. Available from:
https://www.R-project.org/ . - 30Scrucca L, Fop M, Murphy TB, Raftery AE. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal. 2016;8(1):289–317. DOI: 10.32614/RJ-2016-021
- 31Biernacki C, Celeux G, Govaert G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000;22(7):719–25. DOI: 10.1109/34.865189
- 32McLachlan GJ, Rathnayake S. On the number of components in a Gaussian mixture model. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2014;4(5):341–55. DOI: 10.1002/widm.1135
- 33Simpson E. The interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society Series B (Methodological). 1951;12(2):
3 . DOI: 10.1111/j.2517-6161.1951.tb00088.x - 34Artino A, Dong T, DeZee K, Gilliland W, Waechter D, Cruess D, et al. Development and initial validation of a survey to assess students’ self-efficacy and metacognitive strategies in medical school. Academic Medicine. 2012;87(2):205–10. DOI: 10.1097/ACM.0b013e31823bcbfe
- 35Cecilio-Fernandes D, Kerdijk W, Jaarsma ADC, Tio RA. Development of cognitive processing and judgments of knowledge in medical students: Analysis of progress test results. Medical teacher. 2016;38(11):1125–9. DOI: 10.3109/0142159X.2016.1170781
- 36Maki RH, Jonas D, Kallod M. The relationship between comprehesion and metacomprehension ability. Psychological Bulletin Review. 1994;1(1):126–9. DOI: 10.3758/BF03200769
- 37Kruger J, Dunning D. Unskilled and unaware of it: how difficulties in recognizing one’s own incompetence lead to inflated self-assessments. J Pers Soc Psych. 1999;77(6):1121–34. DOI: 10.1037//0022-3514.77.6.1121
- 38Brydges R, Butler D. A reflective analysis of medical education research on self-regulation in learning and practice. 2015;49(1):55–63. DOI: 10.1111/medu.12517
- 39Cleave-Hogg D, Morgan PJ. Experiental learning in an anaesthesia simulation centre: analysis of students’ comments. Medical Teacher. 2009;24:23–6. DOI: 10.1080/00034980120103432
- 40Dornan T, Scherpbier A, King N, Boshuizen N. Clinical teachers and problem-based learning: a phenomenological study. Medical Education. 2005;39(2):163–70. DOI: 10.1111/j.1365-2929.2004.01914.x
- 41Lindblom-Ylänne S, Parpala A, Postareff L. What constitutes the surface approach to learning in the light of new empirical evidence? Studies in Higher Education. 2019;44(12):2183–95. DOI: 10.1080/03075079.2018.1482267
- 42Krathwohl DR. A Revision of Bloom’s Taxonomy: An Overview. Theory Into Practice. 2002;41(4). DOI: 10.1207/s15430421tip4104_2
- 43Gardner-Medwin AR. Confidence assessment in the teaching of basic science. Research in Learning Technology. 1995;3(1). DOI: 10.3402/rlt.v3i1.9597
- 44Cash B, Mitchner NA, Ravyn D. Confidence-Based Learning CME: Overcoming Barriers in Irritable Bowel Syndrome With Constipation. Journal of Continuing Education in the Health Professions. 2011;31(3). DOI: 10.1002/chp.20121
- 45Luetsch K, Burrows J. Certainty rating in pre-and post-tests of study modules in an online clinical pharmacy course - A pilot study to evaluate teaching and learning. BMC Medical Education. 2016;16(1). DOI: 10.1186/s12909-016-0783-1
- 46Gardner-Medwin AR. Analysis of exams using certainty-based marking. Proc Physiol Soc. 2006;
3 . - 47Smrkolj Š, Bančov E, Smrkolj V. The reliability and medical students’ appreciation of certainty-based marking. Int J Environ Res Public Health. 2022;19(3):
1706 . DOI: 10.3390/ijerph19031706 - 48Wu C, Qu Y, Wang L. Confidence calibration, risk preference, and certainty-based marking: a prospect-theory-based psychometric analysis. Psychometrika. 2021;86(3):741–63. DOI: 10.1007/s11336-021-09759-0
