References
- 1Abrahamse, E. L., Jiménez, L., Verwey, W. B., & Clegg, B. A. (2010). Representing serial action and perception. Psychonomic Bulletin & Review, 17(5), 603–623. 10.3758/PBR.17.5.603
- 2Aust, F., & Barth, M. (2024). papaja: Prepare reproducible APA journal articles with R Markdown. 10.32614/CRAN.package.papaja
- 3Barth, M. (2018). Measuring implicit and explicit sequence learning (University of Cologne). University of Cologne, Cologne, Germany. Retrieved from
https://nbn-resolving.org/urn:nbn:de:hbz:38-101322 - 4Barth, M. (2025a). cplmodels: Cognitive models to measure the processes involved in the expression of sequence learning. Retrieved from
https://github.com/mariusbarth/cplmodels - 5Barth, M. (2025b). tinylabels: Lightweight variable labels. 10.32614/CRAN.package.tinylabels
- 6Barth, M., Stahl, C., & Haider, H. (2019). Assumptions of the process-dissociation procedure are violated in implicit sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(4), 641–676. 10.1037/xlm0000614
- 7Barth, M., Stahl, C., & Haider, H. (2023). Parallel acquisition of uncorrelated sequences does not provide firm evidence for a modular sequence-learning system. Journal of Cognition, 6(1),
12 . 10.5334/joc.258 - 8Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. 10.3150/16-BEJ810
- 9Buchner, A., Steffens, M. C., Erdfelder, E., & Rothkegel, R. (1997). A multinomial model to assess fluency and recollection in a sequence learning task. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 50A(3), 631–663. 10.1080/027249897392053
- 10Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76, 1–32. 10.18637/jss.v076.i01
- 11Cleeremans, A., & Jiménez, L. (2002). Implicit learning and consciousness: A graded, dynamic perspective. Implicit Learning and Consciousness, 1–40. Retrieved from
http://journalpsyche.org/articles/0xc03a.pdf - 12Cochrane, A., Sims, C. R., Bejjanki, V. R., Green, C. S., & Bavelier, D. (2023). Multiple timescales of learning indicated by changes in evidence-accumulation processes during perceptual decision-making. {Npj} Science of Learning, 8(1), 1–10. 10.1038/s41539-023-00168-9
- 13Cohen, A., Ivry, R. I., & Keele, S. W. (1990). Attention and structure in sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 17–30. 10.1037/0278-7393.16.1.17
- 14Curran, T., & Keele, S. W. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(1), 189–202. 10.1037/0278-7393.19.1.189
- 15Denwood, M. J. (2016). runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. Journal of Statistical Software, 71(9), 1–25. 10.18637/jss.v071.i09
- 16Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic Bulletin & Review, 8(2), 343–350. 10.3758/BF03196171
- 17Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412–431. 10.1016/0001-6918(69)90065-1
- 18Eberhardt, K., Esser, S., & Haider, H. (2017). Abstract feature codes: The building blocks of the implicit learning system. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1275–1290. 10.1037/xhp0000380
- 19Esser, S., & Haider, H. (2017). The emergence of explicit knowledge in a serial reaction time task: The role of experienced fluency and strength of representation. Frontiers in Psychology, 8,
502 . 10.3389/fpsyg.2017.00502 - 20Esser, S., Lustig, C., & Haider, H. (2021). What triggers explicit awareness in implicit sequence learning? Implications from theories of consciousness. Psychological Research. 10.1007/s00426-021-01594-3
- 21Frensch, P. A., Haider, H., Rünger, D., Neugebauer, U., Voigt, S., & Werg, J. (2003).
The route from implicit learning to verbal expression of what has been learned . In L. Jiménez (Ed.), Attention and Implicit Learning (p. 335). John Benjamins. 10.1075/aicr.48.17fre - 22Frensch, P. A., & Rünger, D. (2003). Implicit Learning. Current Directions in Psychological Science, 12(1), 13–18. 10.1111/1467-8721.01213
- 23Goschke, T., & Bolte, A. (2012). On the modularity of implicit sequence learning: Independent acquisition of spatial, symbolic, and manual sequences. Cognitive Psychology, 65(2), 284–320. 10.1016/j.cogpsych.2012.04.002
- 24Gunawan, D., Hawkins, G. E., Kohn, R., Tran, M.-N., & Brown, S. D. (2022). Time-evolving psychological processes over repeated decisions. Psychological Review, 129(3), 438–456. 10.1037/rev0000351
- 25Haider, H., Eichler, A., & Lange, T. (2011). An old problem: How can we distinguish between conscious and unconscious knowledge acquired in an implicit learning task? Consciousness and Cognition, 20(3), 658–672. 10.1016/j.concog.2010.10.021
- 26Haider, H., Esser, S., & Eberhardt, K. (2020). Feature codes in implicit sequence learning: Perceived stimulus locations transfer to motor response locations. Psychological Research, 84(1), 192–203. 10.1007/s00426-018-0980-0
- 27Haider, H., & Frensch, P. A. (2005). The generation of conscious awareness in an incidental learning situation. Psychological Research, 69(5), 399–411. 10.1007/s00426-004-0209-2
- 28Haider, H., & Rose, M. (2007). How to investigate insight: A proposal. Methods, 42(1), 49–57. 10.1016/j.ymeth.2006.12.004
- 29Hazeltine, E., & Schumacher, E. H. (2016).
Understanding central processes: The case against simple stimulus-response associations and for complex task representation . In B. H. Ross (Ed.), Psychology of Learning and Motivation (Vol. 64, pp. 195–245). Academic Press. 10.1016/bs.plm.2015.09.006 - 30Henrich, F., Hartmann, R., Pratz, V., Voss, A., & Klauer, K. C. (2024). The seven-parameter diffusion model: An implementation in Stan for Bayesian analyses. Behavior Research Methods, 56, 3102–3116. 10.3758/s13428-023-02179-1
- 31Hoffmann, J., & Koch, I. (1997). Stimulus-response compatibility and sequential learning in the serial reaction time task. Psychological Research, 60(1–2), 87–97. 10.1007/BF00419682
- 32Howard, J. H., Mutter, S. A., & Howard, D. V. (1992). Serial pattern learning by event observation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 1029–1039. 10.1037/0278-7393.18.5.1029
- 33Jiménez, L., & Méndez, C. (1999). Which attention is needed for implicit sequence learning? Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 236–259. 10.1037/0278-7393.25.1.236
- 34Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110(2), 316–339. 10.1037/0033-295X.110.2.316
- 35Koch, I. (2007). Anticipatory response control in motor sequence learning: Evidence from stimulus-response compatibility. Human Movement Science, 26(2), 257–274. 10.1016/j.humov.2007.01.004
- 36Koch, I., & Hoffmann, J. (2000). The role of stimulus-based and response-based spatial information in sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(4), 863–882. 10.1037/0278-7393.26.4.863
- 37Kooperberg, C. (2024). logspline: Routines for logspline density estimation. 10.32614/CRAN.package.logspline
- 38Kooperberg, C., & Stone, C. J. (1992). Logspline Density Estimation for Censored Data. Journal of Computational and Graphical Statistics, 1(4), 301–328. 10.1080/10618600.1992.10474588
- 39Lenth, R. V. (2025). emmeans: Estimated marginal means, aka least-squares means. 10.32614/CRAN.package.emmeans
- 40Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492–527. 10.1037/0033-295X.95.4.492
- 41Lüken, M., Heathcote, A., Haaf, J. M., & Matzke, D. (2025). Parameter identifiability in evidence-accumulation models: The effect of error rates on the diffusion decision model and the linear ballistic accumulator. Psychonomic Bulletin & Review. 10.3758/s13423-024-02621-1
- 42Lustig, C., Esser, S., & Haider, H. (2022). The interplay between unexpected events and behavior in the development of explicit knowledge in implicit sequence learning. Psychological Research, 86(7), 2225–2238. 10.1007/s00426-021-01630-2
- 43Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, Memory & Cognition, 22(2), 350–364. 10.1037/0278-7393.22.2.350
- 44Musfeld, P., Souza, A. S., & Oberauer, K. (2023). Repetition learning is neither a continuous nor an implicit process. Proceedings of the National Academy of Sciences, 120(16),
e2218042120 . 10.1073/pnas.2218042120 - 45Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 1–32. 10.1016/0010-0285(87)90002-8
- 46Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., … Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. 10.3758/s13428-018-01193-y
- 47Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing, 124, 1–10. Vienna, Austria. Retrieved from
https://www.r-project.org/conferences/DSC-2003/Drafts/Plummer.pdf - 48Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6(1), 7–11. 10.32614/CRAN.package.coda
- 49R Core Team. (2025). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
https://www.R-project.org/ - 50Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108. 10.1037/0033-295X.85.2.59
- 51Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260–281. 10.1016/j.tics.2016.01.007
- 52Rose, M., Haider, H., & Büchel, C. (2010). The emergence of explicit memory during learning. Cerebral Cortex, 20(12), 2787–2797. 10.1093/cercor/bhq025
- 53Rünger, D., & Frensch, P. A. (2008). How incidental sequence learning creates reportable knowledge: The role of unexpected events. Journal of Experimental Psychology. Learning, Memory & Cognition, 34(5), 1011–1026. 10.1037/a0012942
- 54Schumacher, E. H., & Hazeltine, E. (2016). Hierarchical task representation: Task files and response selection. Current Directions in Psychological Science, 25(6), 449–454. 10.1177/0963721416665085
- 55Schumacher, L., Schnuerch, M., Voss, A., & Radev, S. (2024). Validation and comparison of non-stationary cognitive models: A diffusion model application. Computational Brain & Behavior. 10.1007/s42113-024-00218-4
- 56Schwager, S., Rünger, D., Gaschler, R., & Frensch, P. A. (2012). Data-driven sequence learning or search: What are the prerequisites for the generation of explicit sequence knowledge? Advances in Cognitive Psychology, 8(2), 132–143. 10.5709/acp-0110-4
- 57Schwarb, H., & Schumacher, E. H. (2012). Generalized lessons about sequence learning from the study of the serial reaction time task. Advances in Cognitive Psychology, 8(2), 165–178. 10.5709/acp-0113-1
- 58Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S. (2025). afex: Analysis of factorial experiments. 10.32614/CRAN.package.afex
- 59Singmann, H., Brown, S., Gretton, M., & Heathcote, A. (2022). rtdists: Response time distributions. 10.32614/CRAN.package.rtdists
- 60Song, S., Howard, J. H., & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time task. Experimental Brain Research, 189(2), 145–158. 10.1007/s00221-008-1411-z
- 61Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315. 10.1016/0001-6918(69)90055-9
- 62Tubau, E., Hommel, B., & López-Moliner, J. (2007). Modes of executive control in sequence learning: From stimulus-based to plan-based control. Journal of Experimental Psychology: General, 136(1), 43–63. 10.1037/0096-3445.136.1.43
- 63Verwey, W. B., & Clegg, B. A. (2005). Effector dependent sequence learning in the serial RT task. Psychological Research, 69(4), 242–251. 10.1007/s00426-004-0181-x
- 64Verwey, W. B., Shea, C. H., & Wright, D. L. (2015). A cognitive framework for explaining serial processing and sequence execution strategies. Psychonomic Bulletin & Review, 22(1), 54–77. 10.3758/s13423-014-0773-4
- 65Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology. Experimental Psychology, 60(6), 385–402. 10.1027/1618-3169/a000218
- 66Voss, A., Rothermund, K., Gast, A., & Wentura, D. (2013). Cognitive processes in associative and categorical priming: A diffusion model analysis. Journal of Experimental Psychology: General, 142(2), 536–559. 10.1037/a0029459
- 67Voss, A., Voss, J., & Klauer, K. C. (2010). Separating response-execution bias from decision bias: Arguments for an additional parameter in Ratcliff’s diffusion model. British Journal of Mathematical and Statistical Psychology, 63(3), 539–555. 10.1348/000711009X477581
- 68Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy. European Journal of Cognitive Psychology, 21(5), 641–671. 10.1080/09541440802205067
- 69Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method. Cognitive Psychology, 60(3), 158–189. 10.1016/j.cogpsych.2009.12.001
- 70Wessel, J. R., Haider, H., & Rose, M. (2012). The transition from implicit to explicit representations in incidental learning situations: More evidence from high-frequency EEG coupling. Experimental Brain Research, 217(1), 153–162. 10.1007/s00221-011-2982-7
- 71Willingham, D. B., Greeley, T., & Bardone, A. M. (1993). Dissociation in a serial response time task using a recognition measure: Comment on Perruchet and Amorim (1992). Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(6), 1424–1430. 10.1037/0278-7393.19.6.1424
- 72Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(6), 1047–1060. 10.1037/0278-7393.15.6.1047
- 73Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. E. (2000). Implicit motor sequence learning is represented in response locations. Memory & Cognition, 28, 366–375. 10.3758/BF03198552
