Have a personal or library account? Click to login
Artificial Intelligence in Archaeological Site Conservation: Trends, Challenges, and Future Directions Cover

Artificial Intelligence in Archaeological Site Conservation: Trends, Challenges, and Future Directions

Open Access
|Aug 2025

References

  1. 1Altaweel, M, et al. 2022. ‘Automated Archaeological Feature Detection Using Deep Learning on Optical UAV Imagery: Preliminary Results’. Remote Sensing, 14(3): 553. DOI: 10.3390/rs14030553
  2. 2Altaweel, M, Khelifi, A and Shana’ah, MM. 2024. ‘Monitoring Looting at Cultural Heritage Sites: Applying Deep Learning on Optical Unmanned Aerial Vehicles Data as a Solution’. Social Science Computer Review, 42(2): 480495. DOI: 10.1177/08944393231188471
  3. 3Anttiroiko, N, et al. 2023. ‘Detecting the Archaeological Traces of Tar Production Kilns in the Northern Boreal Forests Based on Airborne Laser Scanning and Deep Learning’. Remote Sensing, 15(7): 1799. DOI: 10.3390/rs15071799
  4. 4Barba, S, Villecco, F and Naddeo, A. 2019. ‘“Ultima Dea”: A Laser Scanner Application for 3D Modelling’. pp. 559569. DOI: 10.1007/978-3-319-95588-9_46
  5. 5Barrile, V, Gattuso, C and Genovese, E. 2024. ‘Review of Geomatics Solutions for Protecting Cultural Heritage in Response to Climate Change’. Heritage, 7(12): 70317049. DOI: 10.3390/heritage7120325
  6. 6Basu, A, et al. 2023. ‘Digital Restoration of Cultural Heritage With Data-Driven Computing: A Survey’. IEEE Access, 11: 5393953977. DOI: 10.1109/ACCESS.2023.3280639
  7. 7Bellini, E, et al. 2025. ‘Situation Awareness for Cyber Resilience: A review’. International Journal of Critical Infrastructure Protection, 49: 100755. DOI: 10.1016/j.ijcip.2025.100755
  8. 8Brezoi, D-V, et al. 2024. ‘Archaeometric Research of Boian Pottery Decoration from the Settlement of Hârșova-Tell’. Heritage, 7(12): 68066824. DOI: 10.3390/heritage7120315
  9. 9Briz, E, et al. 2024. ‘Improving the Resilience of Historic Areas Coping with Natural and Climate Change Hazards: Interventions Based on Multi-Criteria Methodology’. International Journal of Architectural Heritage, 18(8): 12351262. DOI: 10.1080/15583058.2023.2218311
  10. 10Buldo, M, Agustín-Hernández, L and Verdoscia, C. 2024. ‘Semantic Enrichment of Architectural Heritage Point Clouds Using Artificial Intelligence: The Palacio de Sástago in Zaragoza, Spain’. Heritage, 7(12): 69386965. DOI: 10.3390/heritage7120321
  11. 11Casillo, M, et al. 2023. ‘The Role of AI in Improving Interaction With Cultural Heritage’. pp. 107136. DOI: 10.4018/978-1-6684-9999-3.ch006
  12. 12Casillo, M, Cecere, L, et al. 2024. ‘Serious Gaming for Cultural Heritage: The Case Study of the Domus of Abellinum’. pp. 203214. DOI: 10.1007/978-981-97-3305-7_16
  13. 13Casillo, M, Colace, F, et al. 2024. ‘Revolutionizing cultural heritage preservation: an innovative IoT-based framework for protecting historical buildings’. Evolutionary Intelligence [Preprint]. DOI: 10.1007/s12065-024-00959-y
  14. 14Casillo, M, et al. 2025. ‘Integrating Physical and Virtual Experiences in Cultural Tourism: An Adaptive Multimodal Recommender System’. IEEE Access, 13: 2835328368. DOI: 10.1109/ACCESS.2025.3539205.
  15. 15Cecere, L, et al. 2024. ‘Predictive Maintenance of an Archeological Park: An IoT and Digital Twin Based Approach’. pp. 323341. DOI: 10.1007/978-3-031-60611-3_23
  16. 16Choi, H and Kim, S. 2023. ‘Proposal of smart guide system for cultural heritage of archaeological sites using IoT-focusing on Hoeamsa Temple site in Yangju, Korea’. Mathematical Biosciences and Engineering, 20(5): 87458765. DOI: 10.3934/mbe.2023384
  17. 17Clarizia, F, et al. 2024. ‘Method for Ontology Learning from an RDB: Application to the Domain of Cultural Heritage’. pp. 409421. DOI: 10.1007/978-3-031-51026-7_35
  18. 18Coïsson, E and Ferrari, L. 2024. ‘Emergency Response to Damaged Architectural Heritage: Time, Safety and Conservation’. pp. 13201331. DOI: 10.1007/978-3-031-39603-8_106
  19. 19Colace, F, D’Aniello, G, et al. 2025. ‘Situation-aware Cyber–Physical–Social System for Cultural Heritage’. Intelligent Systems with Applications, 27: 200544. DOI: 10.1016/j.iswa.2025.200544
  20. 20Colace, F, De Santo, M, et al. 2025. ‘Detection of maintenance issues from UAV images of archaeological sites: A yolo-based tool’. Multimedia Tools and Applications [Preprint]. DOI: 10.1007/s11042-025-20773-7
  21. 21Condorelli, F and Morena, S. 2023. ‘Integration of 3D modelling with photogrammetry applied on historical images for cultural heritage’. VITRUVIO – International Journal of Architectural Technology and Sustainability, 8: 5869. DOI: 10.4995/vitruvio-ijats.2023.18831
  22. 22D’Aniello, G, et al. 2020. ‘A Situation-aware Learning System based on Fuzzy Cognitive Maps to increase Learner Motivation and Engagement’. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, pp. 18. DOI: 10.1109/FUZZ48607.2020.9177590
  23. 23D’Aniello, G, et al. 2024. ‘Situation identification in smart wearable computing systems based on machine learning and Context Space Theory’. Information Fusion, 104: 102197. DOI: 10.1016/j.inffus.2023.102197
  24. 24D’Aniello, G, Gaeta, M and Reformat, MZ. 2017. ‘Collective Perception in Smart Tourism Destinations with Rough Sets’. In: 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). IEEE, pp. 16. DOI: 10.1109/CYBConf.2017.7985765
  25. 25Di Benedetto, A and Fiani, M. 2022. ‘Integration of LiDAR Data into a Regional Topographic Database for the Generation of a 3D City Model’. pp. 193208. DOI: 10.1007/978-3-031-17439-1_14
  26. 26di Filippo, A, et al. 2022. ‘A Methodological Proposal for the Comparison of 3D Photogrammetric Models’. pp. 930937. DOI: 10.1007/978-3-030-91234-5_94
  27. 27Foka, A and Griffin, G. 2024. ‘AI, Cultural Heritage, and Bias: Some Key Queries That Arise from the Use of GenAI’. Heritage, 7(11): 61256136. DOI: 10.3390/heritage7110287
  28. 28Fulton, J and Darr, M. 2018. ‘GPS, GIS, Guidance, and Variable-rate Technologies for Conservation Management’. pp. 6581. DOI: 10.2134/agronmonogr59.c3
  29. 29Gao, C, et al. 2024. ‘Applying optimized YOLOv8 for heritage conservation: enhanced object detection in Jiangnan traditional private gardens’. Heritage Science, 12(1): 31. DOI: 10.1186/s40494-024-01144-1
  30. 30Garrido, I, et al. 2021. ‘Introduction of Deep Learning in Thermographic Monitoring of Cultural Heritage and Improvement by Automatic Thermogram Pre-Processing Algorithms’. Sensors, 21(3): 750. DOI: 10.3390/s21030750
  31. 31Grilli, E and Remondino, F. 2020. ‘Machine learning generalisation across different 3D architectural heritage’. ISPRS International Journal of Geo-Information, 9(6). DOI: 10.3390/ijgi9060379
  32. 32He, K, et al. 2017. ‘Mask R-CNN’. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, pp. 29802988. DOI: 10.1109/ICCV.2017.322
  33. 33Imen, G, et al. 2024. ‘Utilizing the MaxEnt machine learning model to forecast urban heritage sites in the desert regions of southwestern Algeria: A case study in the Saoura region’. Archaeological Prospection, 31(1): 2335. DOI: 10.1002/arp.1923
  34. 34Jiang, W, et al. 2021. ‘Application of Sensing Technology in the Protection of Architectural Heritage: A Review’. In: 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, pp. 654658. DOI: 10.1109/ICAICA52286.2021.9498249
  35. 35Karadag, İ. 2023. ‘Machine learning for conservation of architectural heritage’. Open House International, 48(1): 2337. DOI: 10.1108/OHI-05-2022-0124
  36. 36Kumoratih, D, et al. 2023. ‘“My Ancestors were Seafarers!”: New Media Design to Restore Collective Memory of Maritime Cultural Heritage in Public Spaces’. E3S Web of Conferences, 426: 02034. DOI: 10.1051/e3sconf/202342602034
  37. 37Lazarinis, F, et al. 2022. ‘An adaptable multi-learner serious game for learning cultural heritage’. Advances in Mobile Learning Educational Research, 2(1): 201215. DOI: 10.25082/AMLER.2022.01.004
  38. 38Lecun, Y, et al. 1998. ‘Gradient-based learning applied to document recognition’. Proceedings of the IEEE, 86(11): 22782324. DOI: 10.1109/5.726791
  39. 39Li, L and Tang, Y. 2023. ‘Towards the Contemporary Conservation of Cultural Heritages: An Overview of Their Conservation History’. Heritage, 7(1): 175192. DOI: 10.3390/heritage7010009
  40. 40Liang, X, et al. 2023. ‘Internet of Cultural Things: Current Research, Challenges and Opportunities’. Computers, Materials & Continua, 74(1): 469488. DOI: 10.32604/cmc.2023.029641
  41. 41Lin, T-Y, et al. 2017. ‘Focal Loss for Dense Object Detection’. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, pp. 29993007. DOI: 10.1109/ICCV.2017.324
  42. 42Liu, Y. 2025. ‘Integrating AI and sustainability in cultural and creative product design for environmentally conscious innovations’. International Journal of Information and Communication Technology, 26(18): 1832. DOI: 10.1504/IJICT.2025.146695
  43. 43Loffredo, R and De Santo, M. 2024. ‘Using Ontologies for LLM Applications in Cultural Heritage’. In: 3rd Workshop on Artificial Intelligence for Cultural Heritage, IAI4CH 202. CEUR Workshop Proceedings.
  44. 44Lorusso, A, Messina, B and Santaniello, D. 2023. ‘The Use of Generative Adversarial Network as Graphical Support for Historical Urban Renovation’. pp. 738748. DOI: 10.1007/978-3-031-13588-0_64
  45. 45Masini, S, et al. 2024. ‘Revealing the structural behaviour of Brunelleschi’s Dome with machine learning techniques’. Data Mining and Knowledge Discovery [Preprint]. DOI: 10.1007/s10618-024-01004-3
  46. 46Mazzetto, S. 2024. ‘Integrating Emerging Technologies with Digital Twins for Heritage Building Conservation: An Interdisciplinary Approach with Expert Insights and Bibliometric Analysis’. Heritage, 7(11): 64326479. DOI: 10.3390/heritage7110300
  47. 47Menaguale, O. 2023. ‘Digital Twin and Cultural Heritage – The Future of Society Built on History and Art’. In: The Digital Twin. Cham: Springer International Publishing, pp. 10811111. DOI: 10.1007/978-3-031-21343-4_34
  48. 48Mertel, A, Ondrejka, P and Šabatová, K. 2018. ‘Spatial predictive modeling of prehistoric sites in the Bohemian-Moravian Highlands based on graph similarity analysis’. Open Geosciences, 10(1): 261274. DOI: 10.1515/geo-2018-0020
  49. 49Mishra, M, Barman, T and Ramana, GV. 2022. ‘Artificial intelligence-based visual inspection system for structural health monitoring of cultural heritage’. Journal of Civil Structural Health Monitoring [Preprint]. DOI: 10.1007/s13349-022-00643-8
  50. 50Moher, D, et al. 2009. ‘Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement’. PLoS Medicine, 6(7): e1000097. DOI: 10.1371/journal.pmed.1000097
  51. 51Page, MJ, et al. 2021. ‘The PRISMA 2020 statement: an updated guideline for reporting systematic reviews’. BMJ, p. n71. DOI: 10.1136/bmj.n71
  52. 52Penjor, T, et al. 2024. ‘Heritage building information modeling (HBIM) for heritage conservation: Framework of challenges, gaps, and existing limitations of HBIM’. Digital Applications in Archaeology and Cultural Heritage, 35: e00366. DOI: 10.1016/j.daach.2024.e00366
  53. 53Prados-Peña, MB, Pavlidis, G and García-López, A. 2023. ‘New technologies for the conservation and preservation of cultural heritage through a bibliometric analysis’. Journal of Cultural Heritage Management and Sustainable Development [Preprint]. DOI: 10.1108/JCHMSD-07-2022-0124
  54. 54Ribera, F, et al. 2020. ‘A multicriteria approach to identify the Highest and Best Use for historical buildings’. Journal of Cultural Heritage, 41: 166177. DOI: 10.1016/j.culher.2019.06.004
  55. 55Richards-Rissetto, H, Newton, D and Al Zadjali, A. 2021. ‘A 3D Point Cloud Deep Learning Approach Using Lidar to Identify Ancient Maya Archaeological Sites’. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, VIII-M-1–2021: 133139. DOI: 10.5194/isprs-annals-VIII-M-1-2021-133-2021
  56. 56Ronneberger, O, Fischer, P and Brox, T. 2015. ‘U-Net: Convolutional Networks for Biomedical Image Segmentation’. pp. 234241. DOI: 10.1007/978-3-319-24574-4_28
  57. 57Rossi, M and Bournas, D. 2023. ‘Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review’. Applied Sciences, 13(11): 6450. DOI: 10.3390/app13116450
  58. 58Roumana, A, Georgopoulos, A and Koutsoudis, A. 2022. ‘Developing an Educational Cultural Heritage 3D Puzzle in a Virtual Reality Environment’. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022: 885891. DOI: 10.5194/isprs-archives-XLIII-B2-2022-885-2022
  59. 59Sizyakin, R, et al. 2020. ‘Crack Detection in Paintings Using Convolutional Neural Networks’. IEEE Access, 8: 7453574552. DOI: 10.1109/ACCESS.2020.2988856
  60. 60Tao, J, et al. 2023. ‘An approach for identifying historic village using deep learning’. SN Applied Sciences, 5(1): 13. DOI: 10.1007/s42452-022-05246-y
  61. 61Tricco, AC, et al. 2018. ‘PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation’. Annals of Internal Medicine, 169(7): 467473. DOI: 10.7326/M18-0850
  62. 62Trier, ØD, Reksten, JH and Løseth, K. 2021. ‘Automated mapping of cultural heritage in Norway from airborne lidar data using faster R-CNN’. International Journal of Applied Earth Observation and Geoinformation, 95: 102241. DOI: 10.1016/j.jag.2020.102241
  63. 63Valero, E, et al. 2019. ‘Automated defect detection and classification in ashlar masonry walls using machine learning’. Automation in Construction, 106. DOI: 10.1016/j.autcon.2019.102846
  64. 64Wachtel, I, et al. 2018. ‘Predictive modeling for archaeological site locations: Comparing logistic regression and maximal entropy in north Israel and north-east China’. Journal of Archaeological Science, 92: 2836. DOI: 10.1016/j.jas.2018.02.001
  65. 65Wu, W, Qi, Z and Fuxin, L. 2019. ‘PointConv: Deep Convolutional Networks on 3D Point Clouds’. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 96139622. DOI: 10.1109/CVPR.2019.00985
  66. 66Yaworsky, PM, et al. 2020. ‘Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument’. PLOS ONE, 15(10): e0239424. DOI: 10.1371/journal.pone.0239424
  67. 67Yu, S and Wang, Y. 2023. ‘The application of traditional Chinese cultural elements in urban street landscape using the Internet of Things and deep learning’. Journal of Intelligent & Fuzzy Systems, 45(6): 1138111395. DOI: 10.3233/JIFS-232292
  68. 68Zhang, Y, et al. 2022. ‘Crack Segmentation on Earthen Heritage Site Surfaces’. Applied Sciences, 12(24): 12830. DOI: 10.3390/app122412830
  69. 69Zou, Z, et al. 2019. ‘CNN-based statistics and location estimation of missing components in routine inspection of historic buildings’. Journal of Cultural Heritage, 38: 221230. DOI: 10.1016/j.culher.2019.02.002
DOI: https://doi.org/10.5334/jcaa.207 | Journal eISSN: 2514-8362
Language: English
Submitted on: Feb 13, 2025
Accepted on: Jul 29, 2025
Published on: Aug 18, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Mario Casillo, Francesco Colace, Rosario Gaeta, Angelo Lorusso, Michele Pellegrino, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.