Have a personal or library account? Click to login
Artificial Intelligence in Archaeological Site Conservation: Trends, Challenges, and Future Directions Cover

Artificial Intelligence in Archaeological Site Conservation: Trends, Challenges, and Future Directions

Open Access
|Aug 2025

Figures & Tables

jcaa-8-1-207-g1.png
Figure 1

PRISMA methodology (Page et al., 2021).

jcaa-8-1-207-g2.png
Figure 2

Co-authorship network graph (VOSviewer).

jcaa-8-1-207-g3.png
Figure 3

Bibliographic coupling network (from VOSviewer).

jcaa-8-1-207-g4.png
Figure 4

Keyword map (Vos Viewer).

jcaa-8-1-207-g5.png
Figure 5

Keyword relation and density (Vos Viewer).

jcaa-8-1-207-g6.png
Figure 6

Citation sources density map (VOSviewer).

Table 1

Main publications 2010–2024.

PERIODNUMBER OF PUBLICATIONSMAIN TECHNOLOGIESAREAS OF INTEREST
2010–201479Basic algorithms for geospatial data analysisInitial identification of sites
2015–2019132LIDAR, predictive algorithms, photogrammetryMapping and predictive modelling
2020–2024243DL, IoT (Internet of Thing) integration, DT (Digital Twin)Monitoring and conservation
Table 2

Summary of analyzed works.

WORKGOALTYPE OF DATATECHNIQUERESULT
(Garrido et al., 2021)Detection and Mapping of SitePredictorsMaxEnt0.859 AUC
(Altaweel, Khelifi and Shana’ah, 2024)Issues Detection and Mapping of Archaeological SitesImages: Three ChannelMask R-CNN Segmentation93% A
(Tao et al., 2023)IdentificationImages: Three ChannelClassification: VGG16, Detection: ResnetClass: 90.79% A
Detect: 95.61% A
(Altaweel et al., 2022)IdentificationImages: Three ChannelMask R-CNN instance segmentationOver 0.9 A
(Trier, Reksten and Løseth, 2021)IdentificationImages: laser scanningFaster R-CNN Detection87% correct class Less 1 % wrong class 13% not detected
(Anttiroiko et al., 2023)IdentificationImages: laser scanningU-Net based semantic segmentation93% A
(Richards-Rissetto, Newton and Al Zadjali, 2021)Identification2D Images and 3D dataPointConv Detection95% A
(Grilli and Remondino, 2020)Identification3D point cloudRandom Forest0.70 to 0.99 F1
(Mertel, Ondrejka and Šabatová, 2018)IdentificationPredictorsGraph analysis and comparison using hamming distance0.65 AUC
(Wachtel et al., 2018)IdentificationPredictorsMax Ent0.796 ± 0.02 AUC on control group 14 and 20% test
(Yaworsky et al., 2020)IdentificationPredictorsMax Ent0.88 AUC
(Imen et al., 2024)IdentificationPredictorsMax Ent0.860 AUC
(Zhang et al., 2022)Issues DetectionImages: Three ChannelFPN-vgg16 Detection84.40% F1-m
73.11% IoU-s
(Sizyakin et al., 2020)Issues DetectionImages: Three ChannelMCNC (CNN)0.819 F1
(Valero et al., 2019)Issues Detection3D point cloudLR MulticlassAbout 0.9 R
(Mishra, Barman and Ramana, 2022)Issues DetectionImages: RGBYoloV5 Detection93.7% mAP
Casillo et al., 2024AI for Decision MakingPredictorsKNN92.21% A
(Karadag, 2023)AI for Decision MakingImages: Three ChannelGAN0,88-0,95 SSIM
(Ribera et al., 2020)AI for Decision MakingPredictorsAnalytic Hierarchy Process (AHP)Avg 8.14 ROI
DOI: https://doi.org/10.5334/jcaa.207 | Journal eISSN: 2514-8362
Language: English
Submitted on: Feb 13, 2025
Accepted on: Jul 29, 2025
Published on: Aug 18, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Mario Casillo, Francesco Colace, Rosario Gaeta, Angelo Lorusso, Michele Pellegrino, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.