Have a personal or library account? Click to login
Archaeological Site Detection: Latest Results from a Deep Learning Based Europe Wide Hillfort Search Cover

Archaeological Site Detection: Latest Results from a Deep Learning Based Europe Wide Hillfort Search

Open Access
|Jan 2025

References

  1. 1Berganzo-Besga, I, Orengo, HA, Lumbreras, F, Alam, A, Campbell, R, Gerrits, PJ, de Souza, JG, Khan, A, Suárez-Moreno, M, Tomaney, J, Roberts, RC and Petrie, CA. 2023. ‘Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan’. Sci Rep, 13: 11257. DOI: 10.1038/s41598-023-38190-x
  2. 2Berganzo-Besga, I, Orengo, HA, Lumbreras, F, Carrero-Pazos, M, Fonte, J and Vilas-Estévez, B. 2021. ‘Hybrid MSRM-Based Deep Learning and Multitemporal Sentinel 2-Based Machine Learning Algorithm Detects Near 10k Archaeological Tumuli in North-Western Iberia’. Remote Sens, 13: 4181. DOI: 10.3390/rs13204181
  3. 3Carter, BP, Blackadar, JH and Conner, WLA. 2021. “When Computers Dream of Charcoal: Using Deep Learning, Open Tools, and Open Data to Identify Relict Charcoal Hearths in and around State Game Lands in Pennsylvania”. Advances in Archaeological Practice, 9(4): 257271. DOI: 10.1017/aap.2021.17
  4. 4Cerrillo-Cuenca, E and Bueno-Ramírez, P. 2019. ‘Counting with the invisible record? The role of LiDAR in the interpretation of megalithic landscapes in south-western Iberia (Extremadura, Alentejo and Beira Baixa)’. Archaeological Prospection, 26: 251264. DOI: 10.1002/arp.1738
  5. 5Chilterns AONB. 2023. Beacons of the Past LiDAR Portal. Available at: https://chilternsbeacons.org/wp/ [Last accessed 14 January 2025].
  6. 6Conta Haller, G. 1978. ‘Ricerce su alcuni centri fortificati in opera poligonale in area campano-sannitica (Valle del Volturno – territorio tra Liri e Volturno)’. Naples: Arte Tipografica.
  7. 7Fontana, G. 2022. ‘Italy’s Hidden Hillforts: A Large-Scale LiDAR-Based Mapping of Samnium’. Journal of Field Archaeology 47(4): 117. DOI: 10.1080/00934690.2022.2031465
  8. 8Fontana, G. 2024. ‘Issues of representativeness in the creation of archaeological datasets from large-scale LiDAR-based surveys in Italian and Mediterranean contexts’. Archaeological Prospection. DOI: 10.1002/arp.1951
  9. 9Freeland, T, Heung, B, Burley, DV, Clark, G and Knudby, A. 2016. ‘Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga’. Journal of Archaeol. Science, 69: 6474. DOI: 10.1016/j.jas.2016.04.011
  10. 10Gallwey, J, Eyre, M, Tonkins, M and Coggan, J. 2019. ‘Bringing Lunar LiDAR Back Down to Earth: Mapping Our Industrial Heritage through Deep Transfer Learning’. Remote Sens, 11: 1994. DOI: 10.3390/rs11171994
  11. 11Google. 2025. Google Earth. Available at: https://earth.google.com [Last accessed 14 January 2025].
  12. 12Heritage Gateway. 2012. Heritage Gateway. Available at: https://www.heritagegateway.org.uk/gateway/ [Last accessed 14 January 2025].
  13. 13Hessische Verwaltung für Bodenmanagement und Geoinformation. 2025. Digitale Geländemodelle. Available at: https://hvbg.hessen.de/landesvermessung/geotopographie/3d-daten/digitale-gelaendemodelle [Last accessed 14 January 2025].
  14. 14Howard, J and Gugger, S. 2020. ‘Fastai: A Layered API for Deep Learning’. Information, 11(2): 108. DOI: 10.3390/info11020108
  15. 15Kokalj, Ž and Hesse, R. 2017. Airborne laser scanning raster data visualization – A Guide to Good Practice, Prostor, Kraj, Čas 14. Ljubljana 2017. Available at: https://omp.zrc-sazu.si/zalozba/catalog/book/824 [Last accessed 14 January 2025]. DOI: 10.3986/9789612549848
  16. 16Kokalj, Ž and Somrak, M. 2019. ‘Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping’. Remote Sensing, 11(7): 747. DOI: 10.3390/rs11070747
  17. 17Landauer, J and Verschoof-van der Vaart, WB. 2021. ‘Find ‘em all: Large-scale automation to detect complex archaeological objects with Deep Learning – a case study on English Hillforts’. In: Proceedings CAA2021, Limassol 2021.
  18. 18Lee, D-H. 2013. ‘Lee DH. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks’. In: ICML 2013 Workshop: Challenges in Representation Learning (WREPL), Atlanta 2013.
  19. 19Liu, Z, Mao, H, Wu, C-Y, Feichtenhofer, C, Darrell, T and Xie, S. 2022. ‘A ConvNet for the 2020s’. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2022, pp. 1196611976, Vol. 2022–June. DOI: 10.1109/CVPR52688.2022.01167
  20. 20Lock, G and Ralston, I. 2017. Atlas of Hillforts of Britain and Ireland. Gateway to Research, Research Councils UK. Available at: https://hillforts.arch.ox.ac.uk/ [Last accessed 14 January 2025].
  21. 21Maddison, S. 2022. ‘Using Atlas data: the recognition and significance of selected clusters of hillforts in Britain’. In: Ralston, I and Lock, G (eds.) The Atlas of Hillforts of Britain and Ireland. Edinburgh: Edinburgh University Press.
  22. 22McCoy, MD. 2017. ‘Geospatial Big Data in Archaeology: Prospects and problems too great to ignore’. Journal of Archaeological Science, 84: 7494. DOI: 10.1016/j.jas.2017.06.003
  23. 23Microsoft Bing. 2025. Bing Maps. Available at: https://www.bing.com/maps [Last accessed 14 January 2025].
  24. 24Ordnance Survey. 2025. OS Maps, Available at: https://explore.osmaps.com/ [Last accessed 14 January 2025].
  25. 25Patzke, A, Gross, S, Massa, F, Lerer, A, Bradbury, J, Chanan, G, Killeen, T, Lin, Z, Gimelshein, N, Antiga, L, Desmaison, A, Köpf, A, Yang, E, DeVito, Z, Raison, M, Tejani, A, Chilamkurthy, S, Steiner, B, Fang, L, Bai, J and Chintala, S. 2019. ‘PyTorch: An Imperative Style, High-Performance Deep Learning Library’. Advances in Neural Information Processing Systems, 32: 80248035. DOI: 10.48550/arXiv.1912.01703
  26. 26Posluschny, AG. 2017. Hillforts and Oppida: Some Thoughts on Fortified Settlements in Southern Germany. In Lock, G and Ralston, I (eds.), Hillforts: Britain, Ireland and the Nearer Continent. Papers from the Atlas of Hillforts of Britain and Ireland Conference, June 2017. Oxford: Archaeopress, 2019. 206222. DOI: 10.2307/j.ctvnb7r0b.19
  27. 27Posluschny, AG. 2022. ‘Siedlungslandschaft Hessen’. In: W. David/V. Rupp/F. Verse (eds.), Kelten Land Hessen. Archäologische Spurensuche im Herzen Europas, Glauberg-Schriften 3 (= Vonderau Museum Fulda – Kataloge 51 & Archäologisches Museum Frankfurt – Publikationen 5). Selbstverlag des Landesamtes für Denkmalpflege Hessen, hessenARCHÄOLOGIE, Wiesbaden 2022. 7279.
  28. 28Python Software Foundation. 2023. Python Language Reference, version 3.10. Available at: http://www.python.org [Last accessed 14 January 2025].
  29. 29Sevara, C, Pregesbauer, M, Doneus, M, Verhoeven, G and Trinks, I. 2016. ‘Pixel versus object – A comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data’. In Journal of Archaeological Science: Reports, 5: 485498. DOI: 10.1016/j.jasrep.2015.12.023
  30. 30Stott, D, Kristiansen, SM and Sindbæk, SM. 2019. ‘Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection’. Remote Sens, 11: 1881. DOI: 10.3390/rs11161881
  31. 31Streetmap EU Ltd. 2009. Streetmap UK. Available at: https://www.streetmap.co.uk/ [Last accessed 14 January 2025].
  32. 32Szegedy, C, Vanhoucke, V, Ioffe, S, Shlens, J and Wojna, Z. 2016. ‘Rethinking the inception architecture for computer vision’. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 28182826. DOI: 10.1109/CVPR.2016.308
  33. 33Takahashi, R, Matsubara, T and Uehara, K. 2019. ‘Data Augmentation Using Random Image Cropping and Patching for Deep CNNs’. In: IEEE Transactions on Circuits and Systems for Video Technology, pp. 11. DOI: 10.1109/TCSVT.2019.2935128
  34. 34Trier, ØD, Cowley, D and Waldeland, AU. 2019. ‘Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland’. Archaeological Prospection, 26(2): 165175. DOI: 10.1002/arp.1731
  35. 35UK Government, Department for Environment, Food & Rural Affairs. 2023. National LIDAR Programme. Available at: https://environment.data.gov.uk/dataset/2e8d0733-4f43-48b4-9e51-631c25d1b0a9 [Last accessed 14 January 2025].
  36. 36Verschoof-van der Vaart, WB, Bonhage, A, Schneider, A, Ouimet, W and Raab, T. 2023. Automated large-scale mapping and analysis of relict charcoal hearths in Connecticut (USA) using a Deep Learning YOLOv4 framework. Archaeological Prospection, 30(3): 251266. DOI: 10.1002/arp.1889
  37. 37Verschoof-van der Vaart, WB and Landauer, J. 2021. ‘Using CarcassonNet to automatically detect and trace hollow roads in LiDAR data from the Netherlands’. Journal of Cultural Heritage, 47: 143154. DOI: 10.1016/j.culher.2020.10.009
  38. 38Vinci, G, Vanzani, F, Fontana, A and Campana, S. 2024. ‘LiDAR Applications in Archaeology: A Systematic Review.’ Archaeological Prospection, 4(1): 121. DOI: 10.1002/arp.1931
  39. 39Xu, Q, Shi, Y, Yuan, X and Zhu, XX. 2023. ‘Universal Domain Adaptation for Remote Sensing Image Scene Classification’. In: IEEE Transactions on Geoscience and Remote Sensing, pp. 115, 61. DOI: 10.1109/TGRS.2023.3235988
DOI: https://doi.org/10.5334/jcaa.178 | Journal eISSN: 2514-8362
Language: English
Submitted on: Aug 20, 2024
Accepted on: Dec 4, 2024
Published on: Jan 31, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Jürgen Landauer, Simon Maddison, Giacomo Fontana, Axel G. Posluschny, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.