References
- 1Berganzo-Besga, I, Orengo, HA, Lumbreras, F, Alam, A, Campbell, R, Gerrits, PJ, de Souza, JG, Khan, A, Suárez-Moreno, M, Tomaney, J, Roberts, RC and Petrie, CA. 2023. ‘Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan’. Sci Rep, 13:
11257 . DOI: 10.1038/s41598-023-38190-x - 2Berganzo-Besga, I, Orengo, HA, Lumbreras, F, Carrero-Pazos, M, Fonte, J and Vilas-Estévez, B. 2021. ‘Hybrid MSRM-Based Deep Learning and Multitemporal Sentinel 2-Based Machine Learning Algorithm Detects Near 10k Archaeological Tumuli in North-Western Iberia’. Remote Sens, 13:
4181 . DOI: 10.3390/rs13204181 - 3Carter, BP, Blackadar, JH and Conner, WLA. 2021. “When Computers Dream of Charcoal: Using Deep Learning, Open Tools, and Open Data to Identify Relict Charcoal Hearths in and around State Game Lands in Pennsylvania”. Advances in Archaeological Practice, 9(4): 257–271. DOI: 10.1017/aap.2021.17
- 4Cerrillo-Cuenca, E and Bueno-Ramírez, P. 2019. ‘Counting with the invisible record? The role of LiDAR in the interpretation of megalithic landscapes in south-western Iberia (Extremadura, Alentejo and Beira Baixa)’. Archaeological Prospection, 26: 251–264. DOI: 10.1002/arp.1738
- 5Chilterns AONB. 2023. Beacons of the Past LiDAR Portal. Available at:
https://chilternsbeacons.org/wp/ [Last accessed 14 January 2025]. - 6Conta Haller, G. 1978.
‘Ricerce su alcuni centri fortificati in opera poligonale in area campano-sannitica (Valle del Volturno – territorio tra Liri e Volturno)’ . Naples: Arte Tipografica. - 7Fontana, G. 2022. ‘Italy’s Hidden Hillforts: A Large-Scale LiDAR-Based Mapping of Samnium’. Journal of Field Archaeology 47(4): 1–17. DOI: 10.1080/00934690.2022.2031465
- 8Fontana, G. 2024. ‘Issues of representativeness in the creation of archaeological datasets from large-scale LiDAR-based surveys in Italian and Mediterranean contexts’. Archaeological Prospection. DOI: 10.1002/arp.1951
- 9Freeland, T, Heung, B, Burley, DV, Clark, G and Knudby, A. 2016. ‘Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga’. Journal of Archaeol. Science, 69: 64–74. DOI: 10.1016/j.jas.2016.04.011
- 10Gallwey, J, Eyre, M, Tonkins, M and Coggan, J. 2019. ‘Bringing Lunar LiDAR Back Down to Earth: Mapping Our Industrial Heritage through Deep Transfer Learning’. Remote Sens, 11:
1994 . DOI: 10.3390/rs11171994 - 11Google. 2025. Google Earth. Available at:
https://earth.google.com [Last accessed 14 January 2025]. - 12Heritage Gateway. 2012. Heritage Gateway. Available at:
https://www.heritagegateway.org.uk/gateway/ [Last accessed 14 January 2025]. - 13Hessische Verwaltung für Bodenmanagement und Geoinformation. 2025. Digitale Geländemodelle. Available at:
https://hvbg.hessen.de/landesvermessung/geotopographie/3d-daten/digitale-gelaendemodelle [Last accessed 14 January 2025]. - 14Howard, J and Gugger, S. 2020. ‘Fastai: A Layered API for Deep Learning’. Information, 11(2):
108 . DOI: 10.3390/info11020108 - 15Kokalj, Ž and Hesse, R. 2017. Airborne laser scanning raster data visualization – A Guide to Good Practice, Prostor, Kraj, Čas 14. Ljubljana 2017. Available at:
https://omp.zrc-sazu.si/zalozba/catalog/book/824 [Last accessed 14 January 2025]. DOI: 10.3986/9789612549848 - 16Kokalj, Ž and Somrak, M. 2019. ‘Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping’. Remote Sensing, 11(7):
747 . DOI: 10.3390/rs11070747 - 17Landauer, J and Verschoof-van der Vaart, WB. 2021.
‘Find ‘em all: Large-scale automation to detect complex archaeological objects with Deep Learning – a case study on English Hillforts’ . In: Proceedings CAA2021, Limassol 2021. - 18Lee, D-H. 2013.
‘Lee DH. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks’ . In: ICML 2013 Workshop: Challenges in Representation Learning (WREPL), Atlanta 2013. - 19Liu, Z, Mao, H, Wu, C-Y, Feichtenhofer, C, Darrell, T and Xie, S. 2022. ‘A ConvNet for the 2020s’. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2022, pp. 11966–11976, Vol. 2022–June. DOI: 10.1109/CVPR52688.2022.01167
- 20Lock, G and Ralston, I. 2017. Atlas of Hillforts of Britain and Ireland. Gateway to Research, Research Councils UK. Available at:
https://hillforts.arch.ox.ac.uk/ [Last accessed 14 January 2025]. - 21Maddison, S. 2022.
‘Using Atlas data: the recognition and significance of selected clusters of hillforts in Britain’ . In: Ralston, I and Lock, G (eds.) The Atlas of Hillforts of Britain and Ireland. Edinburgh: Edinburgh University Press. - 22McCoy, MD. 2017. ‘Geospatial Big Data in Archaeology: Prospects and problems too great to ignore’. Journal of Archaeological Science, 84: 74–94. DOI: 10.1016/j.jas.2017.06.003
- 23Microsoft Bing. 2025. Bing Maps. Available at:
https://www.bing.com/maps [Last accessed 14 January 2025]. - 24Ordnance Survey. 2025. OS Maps, Available at:
https://explore.osmaps.com/ [Last accessed 14 January 2025]. - 25Patzke, A, Gross, S, Massa, F, Lerer, A, Bradbury, J, Chanan, G, Killeen, T, Lin, Z, Gimelshein, N, Antiga, L, Desmaison, A, Köpf, A, Yang, E, DeVito, Z, Raison, M, Tejani, A, Chilamkurthy, S, Steiner, B, Fang, L, Bai, J and Chintala, S. 2019. ‘PyTorch: An Imperative Style, High-Performance Deep Learning Library’. Advances in Neural Information Processing Systems, 32: 8024–8035. DOI: 10.48550/arXiv.1912.01703
- 26Posluschny, AG. 2017. Hillforts and Oppida: Some Thoughts on Fortified Settlements in Southern Germany. In Lock, G and Ralston, I (eds.), Hillforts: Britain, Ireland and the Nearer Continent. Papers from the Atlas of Hillforts of Britain and Ireland Conference,
June 2017 . Oxford:Archaeopress , 2019. 206–222. DOI: 10.2307/j.ctvnb7r0b.19 - 27Posluschny, AG. 2022.
‘Siedlungslandschaft Hessen’ . In: W. David/V. Rupp/F. Verse (eds.), Kelten Land Hessen. Archäologische Spurensuche im Herzen Europas, Glauberg-Schriften 3 (= Vonderau Museum Fulda – Kataloge 51 & Archäologisches Museum Frankfurt – Publikationen 5). Selbstverlag des Landesamtes für Denkmalpflege Hessen, hessenARCHÄOLOGIE, Wiesbaden 2022. 72–79. - 28Python Software Foundation. 2023. Python Language Reference, version 3.10. Available at:
http://www.python.org [Last accessed 14 January 2025]. - 29Sevara, C, Pregesbauer, M, Doneus, M, Verhoeven, G and Trinks, I. 2016.
‘Pixel versus object – A comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data’ . In Journal of Archaeological Science: Reports, 5: 485–498. DOI: 10.1016/j.jasrep.2015.12.023 - 30Stott, D, Kristiansen, SM and Sindbæk, SM. 2019. ‘Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection’. Remote Sens, 11:
1881 . DOI: 10.3390/rs11161881 - 31Streetmap EU Ltd. 2009. Streetmap UK. Available at:
https://www.streetmap.co.uk/ [Last accessed 14 January 2025]. - 32Szegedy, C, Vanhoucke, V, Ioffe, S, Shlens, J and Wojna, Z. 2016. ‘Rethinking the inception architecture for computer vision’. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826. DOI: 10.1109/CVPR.2016.308
- 33Takahashi, R, Matsubara, T and Uehara, K. 2019. ‘Data Augmentation Using Random Image Cropping and Patching for Deep CNNs’. In: IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1. DOI: 10.1109/TCSVT.2019.2935128
- 34Trier, ØD, Cowley, D and Waldeland, AU. 2019. ‘Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland’. Archaeological Prospection, 26(2): 165–175. DOI: 10.1002/arp.1731
- 35UK Government, Department for Environment, Food & Rural Affairs. 2023. National LIDAR Programme. Available at:
https://environment.data.gov.uk/dataset/2e8d0733-4f43-48b4-9e51-631c25d1b0a9 [Last accessed 14 January 2025]. - 36Verschoof-van der Vaart, WB, Bonhage, A, Schneider, A, Ouimet, W and Raab, T. 2023. Automated large-scale mapping and analysis of relict charcoal hearths in Connecticut (USA) using a Deep Learning YOLOv4 framework. Archaeological Prospection, 30(3): 251–266. DOI: 10.1002/arp.1889
- 37Verschoof-van der Vaart, WB and Landauer, J. 2021. ‘Using CarcassonNet to automatically detect and trace hollow roads in LiDAR data from the Netherlands’. Journal of Cultural Heritage, 47: 143–154. DOI: 10.1016/j.culher.2020.10.009
- 38Vinci, G, Vanzani, F, Fontana, A and Campana, S. 2024. ‘LiDAR Applications in Archaeology: A Systematic Review.’ Archaeological Prospection, 4(1): 1–21. DOI: 10.1002/arp.1931
- 39Xu, Q, Shi, Y, Yuan, X and Zhu, XX. 2023. ‘Universal Domain Adaptation for Remote Sensing Image Scene Classification’. In: IEEE Transactions on Geoscience and Remote Sensing, pp. 1–15, 61. DOI: 10.1109/TGRS.2023.3235988
