Have a personal or library account? Click to login
Archaeological Site Detection: Latest Results from a Deep Learning Based Europe Wide Hillfort Search Cover

Archaeological Site Detection: Latest Results from a Deep Learning Based Europe Wide Hillfort Search

Open Access
|Jan 2025

Figures & Tables

jcaa-8-1-178-g1.png
Figure 1

Example prediction result shown on LiDAR background. Grid points with brighter colours indicate higher confidence of a hillfort being nearby (DEM: DEFRA).

Table 1

Result metrics for test regions.

REGIONKNOWN
HILLFORTS
PREDICTED BY AITPFPFNTNPRECISIONRECALLF1SCORE
Northumberland National Park711824913322Not applicable0.270.6939%
Northampton91551040.330.5642%
Taunton (Cornwall)32108268260.240.8137%
Total11230580225320.260.7138%
Table 2

Detection improvement with fine-tuning using local landscape data.

AI MODEL USEDHESSE F1 SCOREMOLISE F1 SCORE
England model only21%12%
England model plus fine-tuning with
3,000 random patches + 22 (Hesse)/32 forts (Molise)
38%34%
jcaa-8-1-178-g2.png
Figure 2

Illustration of the procedure for processing the AI output.

Table 3

Timing breakdown for the North of England analysis.

STAGE 1STAGE 2
AI CONFIDENCE SCORE# SAMPLESTOTAL TIME (HRS)# SAMPLESSAMPLE RATIOTOTAL TIME (HRS)RESULTS
90–100%8900:172427%01:37No candidates
85–90%16800:312917%01:27Two candidate enclosures, each from one sample
80–85%23500:18115%00:23no candidates
75–80%28500:0783%00:05One candidate enclosure
70–75%37700:13144%00:49Two candidate enclosures, one from two samples. This latter is auxiliary to a recorded medieval site
66–70%34600:1593%00:30One candidate enclosure from a single sample
TOTALS150001:419504:51
Average0:04 min3:03 min
jcaa-8-1-178-g3.png
Figure 3

Previously unrecognized English hillfort in the Chilterns region, independently identified by the project (DEM: DEFRA).

jcaa-8-1-178-g4.png
Figure 4

Possible hillforts in Northern England found by AI, not in the Atlas but documented in the HER (DEM: DEFRA, vignette size 768 m ×768 m).

jcaa-8-1-178-g5.png
Figure 5

Examples of False Positives (DEM: DEFRA, vignette size 768 m ×768 m).

jcaa-8-1-178-g6.png
Figure 6

The German state of Hesse in Europe (SRTM USGS-authored or produced data and information are in the public domain).

jcaa-8-1-178-g7.png
Figure 7

Known hillforts in the state of Hesse (SRTM USGS-authored or produced data and information are in the public domain; natural regions BFN; forests GDS Hessen).

jcaa-8-1-178-g8.png
Figure 8

Potential hillforts sites with a confidence value of >90% in the state of Hesse. (SRTM USGS-authored or produced data and information are in the public domain).

Table 4

Classification of the potential hillfort likeliness of findings with a confidence value >90%.

EVALUATION# SITES
Obvious false positives148
Hillfort site (known), often medieval castle or ringwall12
Maybe hillfort4
Road2
Waste disposal site2
Geological formation (other)1
Total169
jcaa-8-1-178-g9.png
Figure 9

Hillshade DEM vignette of a potential hillfort site (DEM: HVBG).

jcaa-8-1-178-g10.png
Figure 10

Examples of possible hillforts (as classified by AI).

jcaa-8-1-178-g11.png
Figure 11

Example of a false positive candidate, most likely wrongly classified due to existing forest paths and terrain structures (DEM: HVBG).

jcaa-8-1-178-g12.png
Figure 12

Differing shapes and sizes of prehistoric hillforts in Hesse (same scale, all north oriented).

Table 5

Classification of the top 100 detections corresponding to confidence value above 0.94.

DETECTIONS
True positives15
False positives85
DETECTIONS BY TYPE
Hillforts15
Villages10
Field systems10
Terrain features65
jcaa-8-1-178-g13.png
Figure 13

Examples of hillforts correctly detected by the AI classifier.

jcaa-8-1-178-g14.png
Figure 14

Examples of false negatives related to the characteristics terraced (left) and maquis landscapes of the Mediterranean (right). The black triangles indicate the fortification circuits of the hillforts.

Table 6

LiDAR data details.

REGIONSPATIAL RESOLUTIONVERTICAL ACCURACYINTERPOLATIONCOVERAGEDATA FORMATACQUISITION PERIODPROVIDERURL
England (UK)1 m+/–15cm RMSEbilinear99%GEOTiff2000–2022Department for Environment Food & Rural Affairs (DEFRA)https://environment.data.gov.uk/survey
Hesse (Germany)1 m+/–10 cmundisclosed100%GEOTiff or XYZundisclosedHessische Verwaltung für Bodenmanagement und Geoinformationhttps://hvbg.hessen.de/landesvermessung/geotopographie/3d-daten/digitale-gelaendemodelle
Molise (Italy)1 m+/–15cmundisclosed66%XYZ2008–2015Ministero dell’Ambiente e della Tutela del Territorio e del Mare (MATTM)https://gn.mase.gov.it/portale/home
DOI: https://doi.org/10.5334/jcaa.178 | Journal eISSN: 2514-8362
Language: English
Submitted on: Aug 20, 2024
Accepted on: Dec 4, 2024
Published on: Jan 31, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Jürgen Landauer, Simon Maddison, Giacomo Fontana, Axel G. Posluschny, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.