Have a personal or library account? Click to login
Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients Cover

Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients

Open Access
|Oct 2021

References

  1. Byl N.N., Abrams G.M., Pitsch E., Fedulow I., Kim H., Simkins M., Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task-specific repetitive training guided by a physical therapist, Hand Ther., 2013, 26, 343–352.
  2. Gosselin C., Determination of the Workspace of 6-DOF Parallel Manipulators, J. Mech. Des., 1990, 112 (3), 331–336.
  3. Gupta A., O’Malley M.K., Design of a Haptic Arm Exoskeleton for Training and Rehabilitation, IEEE ASME Trans. Mechatron., 2006, 11 (3), 280–289.
  4. Gupta A., O’Malley M.K., Patoglu V., Design, Control and Performance of Rice Wrist: A Force Feedback Wrist Exoskeleton for Rehabilitation and Training, Int. J. Rob. Re., 2008, 27 (2), 233–251.
  5. Jiang X., Chen H., Sun D., Baker J.S., Gu Y., Running speed does not influence the asymmetry of kinematic variables of the lower limb joints in novice runners, Acta Bioeng. Biomech., 2021, 23 (1), 69–81.
  6. Kabała T., Sawko L., Dziuba-Słonina A., Giemza C., Influence of modern technologies used in rehabilitation on selected functional parameters of the spine of patients with low back pain, Acta Bioeng. Biomech., 2020, 22 (4), 101–107.
  7. Kowal M., Kołcz A., Dymarek R., Paprocka-Borowicz M., Gnus J., Muscle torque production and kinematic properties in post-stroke patients: a pilot cross-sectional study, Acta Bioeng. Biomech., 2020, 22 (1), 11–20.
  8. Loureiro R.C.V., Harwin W.S., Lamperd R., Collin C., Evaluation of reach and grasp robot-assisted therapy suggests similar functional recovery patterns on proximal and distal arm segments in sub-acute Hemiplegia, IEEE Trans. Neural. Syst. Rehabilitation Eng., 2014, 22 (3), 593–602.
  9. Lu Y., Dai Z., Ye N., Wang P., Kinematics/statics analysis of a novel serial-parallel robotic arm with hand, J. Mech. Sci. Technol., 2015, 29 (10), 4407–4416.
  10. Lukanin V., Inverse kinematics, forward kinematics and working space determination of 3-dof parallel manipulator with S-P-R joint structure, Periodica Polytechnica Ser. Mech. Eng., 2005, 49 (1), 39–61.
  11. Martinez J.A., Ng P., Lu S., Campagna M.S., Celik O., Design of Wrist Gimbal. A forearm and wrist exoskeleton for stroke rehabilitation, 2013 IEEE International Conference on Rehabilitation Robotics, Seattle, Washington USA, (June 24–26, 2013).
  12. Milot M.H., Spencer S.J., Chan V., Allington J.P., Klein J., Chou C., Bobrow J.E., Cramer S.C, Reinkensmeyer D.J., A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training chronic stroke survivors using the arm exoskeleton bones, J. Neuroeng. Rehabil., 2013, 10 (112), 1–12.
  13. Nef T., Mihelj M., Colombo G., Riener R., ARMin – Robot for rehabilitation of the upper extremities, Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, (May 15–19, 2006), 3152–3157.
  14. Otaka E., Otak Y., Kasuga S., Nishimoto A., Yamazaki K., Kawakami M., Ushiba J., Liu M., Clinical usefulness and validity of robotic measures of reaching movements in hemiparetic stroke patients, J. Neuroeng. Rehabil., 2015, 12, 1–10.
  15. Palermo E., Hayes D.R., Russo E.F., Calabrò R.S., Pacilli A., Filoni S., Translational effects of robot-mediated therapy in subacute stroke patients: an experimental evaluation of upper limb motor recovery, Peer J., 2018, 6, 1–25.
  16. Perry J.C., Rosen J., Burns S., Upper-limb powered exoskeleton design, IEEE/ASME Trans. Mechatron., 2007, 12, 408–417.
  17. Pineda-Rico Z., Sanchez De Lucio J.A., Lopez F.J.M., Cruz P., Design of an exoskeleton for upper limb robot – assisted rehabilitation based on co-simulation, J. Vibroengineering, 2016, 18 (5), 3269–3278.
  18. Pons J.L., Wearable robots: Biomechatronic Exoskeletons, John Wiley & Sons, Ltd., 2008.
  19. Rahman M.H., Rahman M.J., Cristobal O.L., Saad M., Kenné J.P., Archambault P.S., Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements, Robotica, 2015, 33 (1), 19–39.
  20. Tsai L.W., Robot Analysis: The Mechanics of Serial and Parallel Manipulator, John Wiley & Sons, 1999.
  21. Vaida C., Plitea N., Carbone G., Birlescu I., Ulinici I., Pisla A., Pisla D., Innovative development of a spherical parallel robot for upper limb rehabilitation, Int. J. Mech. Robot. Syst., 2018, 4 (4), 256–276,
  22. Tappeiner L., Ottaviano E., Husty M.L., A Cable-Driven Robot for Upper Limb Rehabilitation Inspired by the Mirror Therapy, Springer-Mechanisms and Machine Science Book Series, 2017, 174–181.
  23. Alamdari A., Krovi V., Parallel articulated-cable exercise robot (pacer): novel home-based cable-driven parallel platform robot for upper limb neuro-rehabilitation, Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, USA, (August 2–5, 2015), 1–10.
DOI: https://doi.org/10.37190/abb-01875-2021-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 175 - 189
Submitted on: Jun 20, 2021
|
Accepted on: Oct 15, 2021
|
Published on: Oct 26, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Tony Punnoose Valayil, Rose Shaji Augustine, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.