Have a personal or library account? Click to login
Bacteriophages as a Biocontrol Strategy to Prevent the Contamination of Meat Products with Escherichia coli – a Meta-Analysis Cover

Bacteriophages as a Biocontrol Strategy to Prevent the Contamination of Meat Products with Escherichia coli – a Meta-Analysis

Open Access
|Jun 2025

References

  1. Aboah J, Lees N. Consumers use of quality cues for meat purchase: Research trends and future pathways. Meat Sci. 2020 Aug;166:108142. https://doi.org/10.1016/j.meatsci.2020.108142
  2. Adzitey F, Assoah-Peprah P, Teye GA, Somboro AM, Kuma-lo HM, Amoako DG. Prevalence and antimicrobial resistance of Escherichia coli isolated from various meat types in the Tamale Metropolis of Ghana. Int J Food Sci. 2020 Nov;2020:8877196. https://doi.org/10.1155/2020/8877196
  3. Ajuwon BI, Babatunde SK, Kolawole OM, Ajiboye AE, Lawal AH. Prevalence and antibiotic resistance of Escherichia coli O157:H7 in beef at a commercial slaughterhouse in Moro, Kwara State, Nigeria. Access Microbiol. 2021 Nov;3(11):000289. https://doi.org/10.1099/acmi.0.000289
  4. Anany H, Chen W, Pelton R, Griffiths MW. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol. 2011 Sep;77(18):6379–6387. https://doi.org/10.1128/aem.05493-11
  5. Bantawa K, Sah SN, Subba Limbu D, Subba P, Ghimire A. Antibiotic resistance patterns of Staphylococcus aureus, Escherichia coli, Salmonella, Shigella and Vibrio isolated from chicken, pork, buffalo and goat meat in eastern Nepal. BMC Res Notes. 2019 Nov;12(1):766. https://doi.org/10.1186/s13104-019-4798-7
  6. Beier RC, Poole TL, Brichta-Harhay DM, Anderson RC, Bischoff KM, Hernandez CA, Bono JL, Arthur TM, Nagaraja TG, Crippen TL, et al. Disinfectant and antibiotic susceptibility profiles of Escherichia coli O157:H7 strains from cattle carcasses, feces, and hides and ground beef from the United States. J Food Prot. 2013 Jan;76(1):6–17. https://doi.org/10.4315/0362-028x.jfp-12-253
  7. Beyi AF, Fite AT, Tora E, Tafese A, Genu T, Kaba T, Beyene TJ, Beyene T, Korsa MG, Tadesse F, et al. Prevalence and antimicrobial susceptibility of Escherichia coli O157 in beef at butcher shops and restaurants in central Ethiopia. BMC Microbiol. 2017 Mar;17(1):49. https://doi.org/10.1186/s12866-017-0964-z
  8. Bhoomika, Shakya S, Patyal A, Gade NE. Occurrence and characteristics of extended-spectrum β-lactamases producing Escherichia coli in foods of animal origin and human clinical samples in Chhattisgarh, India. Vet World. 2016 Sep;9(9):996–1000. https://doi.org/10.14202/vetworld.2016.996-1000
  9. Buncic S. Biological meat safety: Challenges today and the day after tomorrow. Procedia Food Sci. 2015;5:26–29. https://doi.org/10.1016/j.profoo.2015.09.007
  10. Chlebicz A, Śliżewska K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int J Environ Res Public Health. 2018 Apr;15(5):863. https://doi.org/10.3390/ijerph15050863
  11. de Been M, Lanza VF, de Toro M, Scharringa J, Dohmen W, Du Y, Hu J, Lei Y, Li N, Tooming-Klunderud A, et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 2014 Dec;10(12):e1004776. https://doi.org/10.1371/journal.pgen.1004776
  12. Fegan N, Jenson I. The role of meat in foodborne disease: Is there a coming revolution in risk assessment and management? Meat Sci. 2018 Oct;144:22–29. https://doi.org/10.1016/j.meatsci.2018.04.018
  13. Garvey M. Bacteriophages and food production: Biocontrol and bio-preservation options for food safety. Antibiotics. 2022 Sep 28;11(10):1324. https://doi.org/10.3390/antibiotics11101324
  14. Ge H, Fu S, Guo H, Hu M, Xu Z, Zhou X, Chen X, Jiao X. Application and challenge of bacteriophage in the food protection. Int J Food Microbiol. 2022 Nov;380:109872. https://doi.org/10.1016/j.ijfoodmicro.2022.109872
  15. Gencay YE, Jasinskytė D, Robert C, Semsey S, Martínez V, Petersen AØ, Brunner K, de Santiago Torio A, Salazar A, Turcu IC, et al. Engineered phage with antibacterial CRISPR-Cas selectively reduce E. coli burden in mice. Nat Biotechnol. 2024 Feb;42(2):265–274. https://doi.org/10.1038/s41587-023-01759-y
  16. Gutiérrez Fernández D, Fernández Llamas L, Rodríguez González A, García Suárez P. [Bacteriophages and endolysins in the food industry] (in Spanish). Arbor. 2020;196(795):a544. https://doi.org/10.3989/arbor.2020.795n1008
  17. Harrison MA, Singh RK, Harrison JA, Singh N. Antimicrobial intervention and process validation in beef jerky processing. Washington (USA): United States Department of Agriculture, Food Safety and Inspection Service; 2006.
  18. Higgins JP, Whitehead A, Simmonds M. Sequential methods for random-effects meta-analysis. Stat Med. 2011 Apr;30(9):903–921. https://doi.org/10.1002/sim.4088
  19. Islam MS, Zhou Y, Liang L, Nime I, Liu K, Yan T, Wang X, Li J. Application of a phage cocktail for control of Salmonella in foods and reducing biofilms. Viruses. 2019 Sep 10;11(9):841. https://doi.org/10.3390/v11090841
  20. Koga VL, Rodrigues GR, Scandorieiro S, Vespero EC, Oba A, de Brito BG, de Brito KC, Nakazato G, Kobayashi RK. Evaluation of the antibiotic resistance and virulence of Escherichia coli strains isolated from chicken carcasses in 2007 and 2013 from Paraná, Brazil. Foodborne Pathog Dis. 2015 Jun;12(6):479–485. https://doi.org/10.1089/fpd.2014.1888
  21. Korf IHE, Meier-Kolthoff JP, Adriaenssens EM, Kropinski AM, Nimtz M, Rohde M, van Raaij MJ, Wittmann J. Still something to discover: Novel insights into Escherichia coli phage diversity and taxonomy. Viruses. 2019 May;11(5):454. https://doi.org/10.3390/v11050454
  22. Kornienko M, Kuptsov N, Gorodnichev R, Bespiatykh D, Guliaev A, Letarova M, Kulikov E, Veselovsky V, Malakhova M, Le-tarov A, et al. Contribution of Podoviridae and Myoviridae bacteriophages to the effectiveness of anti-staphylococcal therapeutic cocktails. Sci Rep. 2020 Oct;10(1):18612. https://doi.org/10.1038/s41598-020-75637-x
  23. Kuek M, McLean SK, Palombo EA. Control of Escherichia coli in fresh-cut mixed vegetables using a combination of bacteriophage and carvacrol. Antibiotics. 2023 Oct;12(11):1579. https://doi.org/10.3390/antibiotics12111579
  24. Lebert A, Daudin JD. Modelling the distribution of aw, pH and ions in marinated beef meat. Meat Sci. 2014 Jul;97(3):347–357. https://doi.org/10.1016/j.meatsci.2013.10.017
  25. Li K, McKeith AG, Shen C, McKeith R. A comparison study of quality attributes of ground beef and veal patties and thermal inactivation of Escherichia coli O157:H7 after double pan-broiling under dynamic conditions. Foods. 2017 Dec 26;7(1):1. https://doi.org/10.3390/foods7010001
  26. Litt PK, Jaroni D. Isolation and physiomorphological characterization of Escherichia coli O157:H7-infecting bacteriophages recovered from beef cattle operations. Int J Microbiol. 2017;2017:7013236. https://doi.org/10.1155/2017/7013236
  27. López-Cuevas O, Medrano-Félix JA, Castro-Del Campo N, Chaidez C. Bacteriophage applications for fresh produce food safety. Int J Environ Health Res. 2021 Sep;31(6):687–702. https://doi.org/10.1080/09603123.2019.1680819
  28. Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, et al. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol. 2021 Nov;19(11):e3001424. https://doi.org/10.1371/journal.pbio.3001424
  29. Mahanty S, Doron A, Hamilton R. A policy and research agenda for Asia’s poultry industry. Asia Pac Policy Stud. 2023;10(1–3):63–72. https://doi.org/10.1002/app5.377
  30. Mangieri N, Foschino R, Picozzi C. Application of bacteriophages on Shiga toxin-producing Escherichia coli (STEC) biofilm. Antibiotics. 2021 Nov;10(11):1423. https://doi.org/10.3390/antibiot-ics10111423
  31. Manohar P, Tamhankar AJ, Lundborg CS, Nachimuthu R. Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front Microbiol. 2019 Mar;10:574. https://doi.org/10.3389/fmicb.2019.00574
  32. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ. 2009 Jul;339:b2535. https://doi.org/10.1136/bmj.b2535
  33. Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, et al. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol. 2020 Oct;18(10):e3000877. https://doi.org/10.1371/journal.pbio.3000877
  34. Nikolich MP, Filippov AA. Bacteriophage therapy: Developments and directions. Antibiotics. 2020 Mar;9(3):135. https://doi.org/10.3390/antibiotics9030135
  35. Nikulin N, Nikulina A, Zimin A, Aminov R. Phages for treatment of Escherichia coli infections. Prog Mol Biol Transl Sci. 2023;200:171–206. https://doi.org/10.1016/bs.pmbts.2023.03.011
  36. Niu YD, Liu H, Du H, Meng R, Sayed Mahmoud E, Wang G, McAllister TA, Stanford K. Efficacy of individual bacteriophages does not predict efficacy of bacteriophage cocktails for control of Escherichia coli O157. Front Microbiol. 2021 Feb 24;12:616712. https://doi.org/10.3389/fmicb.2021.616712
  37. Noor Mohammadi T, Shen C, Li Y, Zayda MG, Sato J, Masuda Y, Honjoh KI, Miyamoto T. Characterization of Clostridium perfringens bacteriophages and their application in chicken meat and milk. Int J Food Microbiol. 2022 Jan;361:109446. https://doi.org/10.1016/j.ijfoodmicro.2021.109446
  38. Okubo T, Yossapol M, Ikushima S, Kakooza S, Wampande EM, Asai T, Tsuchida S, Ohya K, Maruyama F, Kabasa JD, et al. Isolation and characterization of antimicrobial-resistant Escherichia coli from retail meats from roadside butcheries in Uganda. Foodborne Pathog Dis. 2020 Nov;17(11):666–671. https://doi.org/10.1089/fpd.2020.2796
  39. Omer MK, Álvarez-Ordoñez A, Prieto M, Skjerve E, Asehun T, Alvseike OA. A systematic review of bacterial foodborne outbreaks related to red meat and meat products. Foodborne Pathog Dis. 2018 Oct;15(10):598–611. https://doi.org/10.1089/fpd.2017.2393
  40. Pungpian C, Lee S, Trongjit S, Sinwat N, Angkititrakul S, Prathan R, Srisanga S, Chuanchuen R. Colistin resistance and plasmid-mediated mcr genes in Escherichia coli and Salmonella isolated from pigs, pig carcass and pork in Thailand, Lao PDR and Cambodia border provinces. J Vet Sci. 2021 Sep;22(5):e68. https://doi.org/10.4142/jvs.2021.22.e68
  41. Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga toxin-producing Escherichia coli and their contribution to pathogenicity. Pathogens. 2021 Mar;10(4):404. https://doi.org/10.3390/pathogens10040404
  42. Sánchez F, Fuenzalida V, Ramos R, Escobar B, Neira V, Borie C, Lapierre L, López P, Venegas L, Dettleff P, et al. Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health. 2021 May;68(3):226–238. https://doi.org/10.1111/zph.12818
  43. Schwarzer G. General Package for Meta-Analysis. 2024 Oct;(3)500. https://doi.org/10.1007/978-3-319-21416-0
  44. Schwarzer G. Meta: An R Package for Meta-Analysis Cran.Rstu-dio.Org. 2007 Jan;7:40–45. https://cran.rstudio.org/doc/Rnews/Rnews_2007-3.pdf#page=40
  45. Seo J, Seo DJ, Oh H, Jeon SB, Oh MH, Choi C. Inhibiting the growth of Escherichia coli O157:H7 in beef, pork, and chicken meat using a bacteriophage. Korean J Food Sci Anim Resour. 2016;36(2):186–193. https://doi.org/10.5851/kosfa.2016.36.2.186
  46. Sillankorva SM, Oliveira H, Azeredo J. Bacteriophages and their role in food safety. Int J Microbiol. 2012;2012:863945. https://doi.org/10.1155/2012/863945
  47. Snyder AB, Perry JJ, Yousef AE. Developing and optimizing bacteriophage treatment to control enterohemorrhagic Escherichia coli on fresh produce. Int J Food Microbiol. 2016 Nov;236:90–97. https://doi.org/10.1016/j.ijfoodmicro.2016.07.023
  48. Sonola VS, Katakweba A, Misinzo G, Matee MI. Molecular epidemiology of antibiotic resistance genes and virulence factors in multidrug-resistant Escherichia coli isolated from rodents, humans, chicken, and household soils in Karatu, Northern Tanzania. Int J Environ Res Public Health. 2022 Apr;19(9):5388. https://doi.org/10.3390/ijerph19095388
  49. Sulakvelidze A. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J Sci Food Agric. 2013 Oct;93(13):3137–3146. https://doi.org/10.1002/jsfa.6222
  50. Toribio-Avedillo D, Blanch AR, Muniesa M, Rodríguez-Rubio L. Bacteriophages as fecal pollution indicators. Viruses. 2021 Jun;13(6):1089. https://doi.org/10.3390/v13061089
  51. Triki M, Herrero AM, Jiménez-Colmenero F, Ruiz-Capillas C. Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods. 2018 Aug 25;7(9):132. https://doi.org/10.3390/foods7090132
  52. Vassallo CN, Doering CR, Littlehale ML, Teodoro GIC, Laub MT. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat Microbiol. 2022 Oct;7(10):1568–1579. https://doi.org/10.1038/s41564-022-01219-4
  53. Wang L, Qu K, Li X, Cao Z, Wang X, Li Z, Song Y, Xu Y. Use of bacteriophages to control Escherichia coli O157:H7 in domestic ruminants, meat products, and fruits and vegetables. Foodborne Pathog Dis. 2017 Sep;14(9):483–493. https://doi.org/10.1089/fpd.2016.2266
  54. Wang W, Wang L, Su J, Xu Z. Antibiotic susceptibility, biofilm-forming ability, and incidence of class 1 integron of Salmonella spp., Escherichia coli, and Staphylococcus aureus isolated from various foods in a school canteen in China. Foodborne Pathog Dis. 2020 Apr;17(4):269–275. https://doi.org/10.1089/fpd.2019.2694
  55. Weng S, López A, Sáez-Orviz S, Marcet I, García P, Rendueles M, Díaz M. Effectiveness of bacteriophages incorporated in gelatine films against Staphylococcus aureus. Food Control. 2021 Oct;121:107666. https://doi.org/10.1016/j.foodcont.2020.107666
DOI: https://doi.org/10.33073/pjm-2025-014 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 165 - 176
Submitted on: Feb 7, 2025
|
Accepted on: Apr 17, 2025
|
Published on: Jun 18, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 IRACEMA ISLAS VEGA, NYDIA EDITH REYES RODRÍGUEZ, VICTOR JOHAN ACOSTA PÉREZ, ANDREA PALOMA ZEPEDA VELÁZQUEZ, VICENTE VEGA SÁNCHEZ, JORGE LUIS DE LA ROSA ARANA, JESÚS BENJAMÍN PONCE NOGUEZ, FABÍAN RICARDO GÓMEZ DE ANDA, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.