References
- Aboah J, Lees N. Consumers use of quality cues for meat purchase: Research trends and future pathways. Meat Sci. 2020 Aug;166:108142. https://doi.org/10.1016/j.meatsci.2020.108142
- Adzitey F, Assoah-Peprah P, Teye GA, Somboro AM, Kuma-lo HM, Amoako DG. Prevalence and antimicrobial resistance of Escherichia coli isolated from various meat types in the Tamale Metropolis of Ghana. Int J Food Sci. 2020 Nov;2020:8877196. https://doi.org/10.1155/2020/8877196
- Ajuwon BI, Babatunde SK, Kolawole OM, Ajiboye AE, Lawal AH. Prevalence and antibiotic resistance of Escherichia coli O157:H7 in beef at a commercial slaughterhouse in Moro, Kwara State, Nigeria. Access Microbiol. 2021 Nov;3(11):000289. https://doi.org/10.1099/acmi.0.000289
- Anany H, Chen W, Pelton R, Griffiths MW. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol. 2011 Sep;77(18):6379–6387. https://doi.org/10.1128/aem.05493-11
- Bantawa K, Sah SN, Subba Limbu D, Subba P, Ghimire A. Antibiotic resistance patterns of Staphylococcus aureus, Escherichia coli, Salmonella, Shigella and Vibrio isolated from chicken, pork, buffalo and goat meat in eastern Nepal. BMC Res Notes. 2019 Nov;12(1):766. https://doi.org/10.1186/s13104-019-4798-7
- Beier RC, Poole TL, Brichta-Harhay DM, Anderson RC, Bischoff KM, Hernandez CA, Bono JL, Arthur TM, Nagaraja TG, Crippen TL, et al. Disinfectant and antibiotic susceptibility profiles of Escherichia coli O157:H7 strains from cattle carcasses, feces, and hides and ground beef from the United States. J Food Prot. 2013 Jan;76(1):6–17. https://doi.org/10.4315/0362-028x.jfp-12-253
- Beyi AF, Fite AT, Tora E, Tafese A, Genu T, Kaba T, Beyene TJ, Beyene T, Korsa MG, Tadesse F, et al. Prevalence and antimicrobial susceptibility of Escherichia coli O157 in beef at butcher shops and restaurants in central Ethiopia. BMC Microbiol. 2017 Mar;17(1):49. https://doi.org/10.1186/s12866-017-0964-z
- Bhoomika, Shakya S, Patyal A, Gade NE. Occurrence and characteristics of extended-spectrum β-lactamases producing Escherichia coli in foods of animal origin and human clinical samples in Chhattisgarh, India. Vet World. 2016 Sep;9(9):996–1000. https://doi.org/10.14202/vetworld.2016.996-1000
- Buncic S. Biological meat safety: Challenges today and the day after tomorrow. Procedia Food Sci. 2015;5:26–29. https://doi.org/10.1016/j.profoo.2015.09.007
- Chlebicz A, Śliżewska K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int J Environ Res Public Health. 2018 Apr;15(5):863. https://doi.org/10.3390/ijerph15050863
- de Been M, Lanza VF, de Toro M, Scharringa J, Dohmen W, Du Y, Hu J, Lei Y, Li N, Tooming-Klunderud A, et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 2014 Dec;10(12):e1004776. https://doi.org/10.1371/journal.pgen.1004776
- Fegan N, Jenson I. The role of meat in foodborne disease: Is there a coming revolution in risk assessment and management? Meat Sci. 2018 Oct;144:22–29. https://doi.org/10.1016/j.meatsci.2018.04.018
- Garvey M. Bacteriophages and food production: Biocontrol and bio-preservation options for food safety. Antibiotics. 2022 Sep 28;11(10):1324. https://doi.org/10.3390/antibiotics11101324
- Ge H, Fu S, Guo H, Hu M, Xu Z, Zhou X, Chen X, Jiao X. Application and challenge of bacteriophage in the food protection. Int J Food Microbiol. 2022 Nov;380:109872. https://doi.org/10.1016/j.ijfoodmicro.2022.109872
- Gencay YE, Jasinskytė D, Robert C, Semsey S, Martínez V, Petersen AØ, Brunner K, de Santiago Torio A, Salazar A, Turcu IC, et al. Engineered phage with antibacterial CRISPR-Cas selectively reduce E. coli burden in mice. Nat Biotechnol. 2024 Feb;42(2):265–274. https://doi.org/10.1038/s41587-023-01759-y
- Gutiérrez Fernández D, Fernández Llamas L, Rodríguez González A, García Suárez P. [Bacteriophages and endolysins in the food industry] (in Spanish). Arbor. 2020;196(795):a544. https://doi.org/10.3989/arbor.2020.795n1008
- Harrison MA, Singh RK, Harrison JA, Singh N. Antimicrobial intervention and process validation in beef jerky processing. Washington (USA): United States Department of Agriculture, Food Safety and Inspection Service; 2006.
- Higgins JP, Whitehead A, Simmonds M. Sequential methods for random-effects meta-analysis. Stat Med. 2011 Apr;30(9):903–921. https://doi.org/10.1002/sim.4088
- Islam MS, Zhou Y, Liang L, Nime I, Liu K, Yan T, Wang X, Li J. Application of a phage cocktail for control of Salmonella in foods and reducing biofilms. Viruses. 2019 Sep 10;11(9):841. https://doi.org/10.3390/v11090841
- Koga VL, Rodrigues GR, Scandorieiro S, Vespero EC, Oba A, de Brito BG, de Brito KC, Nakazato G, Kobayashi RK. Evaluation of the antibiotic resistance and virulence of Escherichia coli strains isolated from chicken carcasses in 2007 and 2013 from Paraná, Brazil. Foodborne Pathog Dis. 2015 Jun;12(6):479–485. https://doi.org/10.1089/fpd.2014.1888
- Korf IHE, Meier-Kolthoff JP, Adriaenssens EM, Kropinski AM, Nimtz M, Rohde M, van Raaij MJ, Wittmann J. Still something to discover: Novel insights into Escherichia coli phage diversity and taxonomy. Viruses. 2019 May;11(5):454. https://doi.org/10.3390/v11050454
- Kornienko M, Kuptsov N, Gorodnichev R, Bespiatykh D, Guliaev A, Letarova M, Kulikov E, Veselovsky V, Malakhova M, Le-tarov A, et al. Contribution of Podoviridae and Myoviridae bacteriophages to the effectiveness of anti-staphylococcal therapeutic cocktails. Sci Rep. 2020 Oct;10(1):18612. https://doi.org/10.1038/s41598-020-75637-x
- Kuek M, McLean SK, Palombo EA. Control of Escherichia coli in fresh-cut mixed vegetables using a combination of bacteriophage and carvacrol. Antibiotics. 2023 Oct;12(11):1579. https://doi.org/10.3390/antibiotics12111579
- Lebert A, Daudin JD. Modelling the distribution of aw, pH and ions in marinated beef meat. Meat Sci. 2014 Jul;97(3):347–357. https://doi.org/10.1016/j.meatsci.2013.10.017
- Li K, McKeith AG, Shen C, McKeith R. A comparison study of quality attributes of ground beef and veal patties and thermal inactivation of Escherichia coli O157:H7 after double pan-broiling under dynamic conditions. Foods. 2017 Dec 26;7(1):1. https://doi.org/10.3390/foods7010001
- Litt PK, Jaroni D. Isolation and physiomorphological characterization of Escherichia coli O157:H7-infecting bacteriophages recovered from beef cattle operations. Int J Microbiol. 2017;2017:7013236. https://doi.org/10.1155/2017/7013236
- López-Cuevas O, Medrano-Félix JA, Castro-Del Campo N, Chaidez C. Bacteriophage applications for fresh produce food safety. Int J Environ Health Res. 2021 Sep;31(6):687–702. https://doi.org/10.1080/09603123.2019.1680819
- Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, et al. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol. 2021 Nov;19(11):e3001424. https://doi.org/10.1371/journal.pbio.3001424
- Mahanty S, Doron A, Hamilton R. A policy and research agenda for Asia’s poultry industry. Asia Pac Policy Stud. 2023;10(1–3):63–72. https://doi.org/10.1002/app5.377
- Mangieri N, Foschino R, Picozzi C. Application of bacteriophages on Shiga toxin-producing Escherichia coli (STEC) biofilm. Antibiotics. 2021 Nov;10(11):1423. https://doi.org/10.3390/antibiot-ics10111423
- Manohar P, Tamhankar AJ, Lundborg CS, Nachimuthu R. Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front Microbiol. 2019 Mar;10:574. https://doi.org/10.3389/fmicb.2019.00574
- Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ. 2009 Jul;339:b2535. https://doi.org/10.1136/bmj.b2535
- Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, et al. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol. 2020 Oct;18(10):e3000877. https://doi.org/10.1371/journal.pbio.3000877
- Nikolich MP, Filippov AA. Bacteriophage therapy: Developments and directions. Antibiotics. 2020 Mar;9(3):135. https://doi.org/10.3390/antibiotics9030135
- Nikulin N, Nikulina A, Zimin A, Aminov R. Phages for treatment of Escherichia coli infections. Prog Mol Biol Transl Sci. 2023;200:171–206. https://doi.org/10.1016/bs.pmbts.2023.03.011
- Niu YD, Liu H, Du H, Meng R, Sayed Mahmoud E, Wang G, McAllister TA, Stanford K. Efficacy of individual bacteriophages does not predict efficacy of bacteriophage cocktails for control of Escherichia coli O157. Front Microbiol. 2021 Feb 24;12:616712. https://doi.org/10.3389/fmicb.2021.616712
- Noor Mohammadi T, Shen C, Li Y, Zayda MG, Sato J, Masuda Y, Honjoh KI, Miyamoto T. Characterization of Clostridium perfringens bacteriophages and their application in chicken meat and milk. Int J Food Microbiol. 2022 Jan;361:109446. https://doi.org/10.1016/j.ijfoodmicro.2021.109446
- Okubo T, Yossapol M, Ikushima S, Kakooza S, Wampande EM, Asai T, Tsuchida S, Ohya K, Maruyama F, Kabasa JD, et al. Isolation and characterization of antimicrobial-resistant Escherichia coli from retail meats from roadside butcheries in Uganda. Foodborne Pathog Dis. 2020 Nov;17(11):666–671. https://doi.org/10.1089/fpd.2020.2796
- Omer MK, Álvarez-Ordoñez A, Prieto M, Skjerve E, Asehun T, Alvseike OA. A systematic review of bacterial foodborne outbreaks related to red meat and meat products. Foodborne Pathog Dis. 2018 Oct;15(10):598–611. https://doi.org/10.1089/fpd.2017.2393
- Pungpian C, Lee S, Trongjit S, Sinwat N, Angkititrakul S, Prathan R, Srisanga S, Chuanchuen R. Colistin resistance and plasmid-mediated mcr genes in Escherichia coli and Salmonella isolated from pigs, pig carcass and pork in Thailand, Lao PDR and Cambodia border provinces. J Vet Sci. 2021 Sep;22(5):e68. https://doi.org/10.4142/jvs.2021.22.e68
- Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga toxin-producing Escherichia coli and their contribution to pathogenicity. Pathogens. 2021 Mar;10(4):404. https://doi.org/10.3390/pathogens10040404
- Sánchez F, Fuenzalida V, Ramos R, Escobar B, Neira V, Borie C, Lapierre L, López P, Venegas L, Dettleff P, et al. Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health. 2021 May;68(3):226–238. https://doi.org/10.1111/zph.12818
- Schwarzer G. General Package for Meta-Analysis. 2024 Oct;(3)500. https://doi.org/10.1007/978-3-319-21416-0
- Schwarzer G. Meta: An R Package for Meta-Analysis Cran.Rstu-dio.Org. 2007 Jan;7:40–45. https://cran.rstudio.org/doc/Rnews/Rnews_2007-3.pdf#page=40
- Seo J, Seo DJ, Oh H, Jeon SB, Oh MH, Choi C. Inhibiting the growth of Escherichia coli O157:H7 in beef, pork, and chicken meat using a bacteriophage. Korean J Food Sci Anim Resour. 2016;36(2):186–193. https://doi.org/10.5851/kosfa.2016.36.2.186
- Sillankorva SM, Oliveira H, Azeredo J. Bacteriophages and their role in food safety. Int J Microbiol. 2012;2012:863945. https://doi.org/10.1155/2012/863945
- Snyder AB, Perry JJ, Yousef AE. Developing and optimizing bacteriophage treatment to control enterohemorrhagic Escherichia coli on fresh produce. Int J Food Microbiol. 2016 Nov;236:90–97. https://doi.org/10.1016/j.ijfoodmicro.2016.07.023
- Sonola VS, Katakweba A, Misinzo G, Matee MI. Molecular epidemiology of antibiotic resistance genes and virulence factors in multidrug-resistant Escherichia coli isolated from rodents, humans, chicken, and household soils in Karatu, Northern Tanzania. Int J Environ Res Public Health. 2022 Apr;19(9):5388. https://doi.org/10.3390/ijerph19095388
- Sulakvelidze A. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J Sci Food Agric. 2013 Oct;93(13):3137–3146. https://doi.org/10.1002/jsfa.6222
- Toribio-Avedillo D, Blanch AR, Muniesa M, Rodríguez-Rubio L. Bacteriophages as fecal pollution indicators. Viruses. 2021 Jun;13(6):1089. https://doi.org/10.3390/v13061089
- Triki M, Herrero AM, Jiménez-Colmenero F, Ruiz-Capillas C. Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods. 2018 Aug 25;7(9):132. https://doi.org/10.3390/foods7090132
- Vassallo CN, Doering CR, Littlehale ML, Teodoro GIC, Laub MT. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat Microbiol. 2022 Oct;7(10):1568–1579. https://doi.org/10.1038/s41564-022-01219-4
- Wang L, Qu K, Li X, Cao Z, Wang X, Li Z, Song Y, Xu Y. Use of bacteriophages to control Escherichia coli O157:H7 in domestic ruminants, meat products, and fruits and vegetables. Foodborne Pathog Dis. 2017 Sep;14(9):483–493. https://doi.org/10.1089/fpd.2016.2266
- Wang W, Wang L, Su J, Xu Z. Antibiotic susceptibility, biofilm-forming ability, and incidence of class 1 integron of Salmonella spp., Escherichia coli, and Staphylococcus aureus isolated from various foods in a school canteen in China. Foodborne Pathog Dis. 2020 Apr;17(4):269–275. https://doi.org/10.1089/fpd.2019.2694
- Weng S, López A, Sáez-Orviz S, Marcet I, García P, Rendueles M, Díaz M. Effectiveness of bacteriophages incorporated in gelatine films against Staphylococcus aureus. Food Control. 2021 Oct;121:107666. https://doi.org/10.1016/j.foodcont.2020.107666