References
- Arcus VL, van der Kamp MW, Pudney CR, Mulholland AJ. Enzyme evolution and the temperature dependence of enzyme catalysis. Curr Opin Struct Biol. 2020 Dec;65:96–101. https://doi.org/10.1016/j.sbi.2020.06.001
- Atudorei D, Atudorei O, Codină GG. Dough rheological properties, microstructure and bread quality of wheat-germinated bean composite flour. Foods. 2021 Jul;10(7)1542. https://doi.org/10.3390/foods10071542
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem. 1976 May;72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Carroll LM, Cheng RA, Wiedmann M, Kovac J. Keeping up with the Bacillus cereus group: Taxonomy through the genomics era and beyond. Crit Rev Food Sci Nutr. 2022;62(28):7677–7702. https://doi.org/10.1080/10408398.2021.1916735
- da Costa-Latgé SG, Bates P, Dillon R, Genta FA.Characterization of glycoside hydrolase families 13 and 31 reveals expansion and diversification of α-amylase genes in the phlebotomine Lutzomyia longipalpis and modulation of sandfly glycosidase activities by Leish-mania infection. Front Physiol. 2021 Apr;12:635633. https://doi.org/10.3389/fphys.2021.635633
- Dahiya S, Bajaj BK, Kumar A, Tiwari SK, Singh B. A review on biotechnological potential of multifarious enzymes in bread making. Proc Biochem. 2020 Dec;99:290–306. https://doi.org/10.1016/j.procbio.2020.09.002
- Elyasi Far B, Ahmadi Y, Yari Khosroshahi A, Dilmaghani A. Microbial alpha-amylase production: Progress, challenges and perspectives. Adv Pharm Bull. 2020 Jul;10(3):350–358. https://doi.org/10.34172/apb.2020.043
- Farooq MA, Ali S, Hassan A, Tahir HM, Mumtaz S, Mumtaz S. Biosynthesis and industrial applications of α-amylase: A review. Arch Microbiol. 2021 May;203(4):1281–1292. https://doi.org/10.1007/s00203-020-02128-y
- Gazali FM, Suwastika IN. Thermostable α-amylase activity from thermophilic bacteria isolated from Bora Hot Spring, Central Sulawesi. In J Phys Conf Ser. 2018 Mar;979:012001. https://doi.org/10.1088/1742-6596/979/1/012001
- Giri SS. Application of microbial biosurfactants in the pharmaceutical industry. In: Inamuddin, Ahamed MI, Prasad R, editors. Microbial biosurfactants. Environmental and microbial biotechnology. Singapore: Springer; 2021. https://doi.org/10.1007/978-981-15-6607-3_12
- Goesaert H, Slade L, Levine H, Delcour JA. Amylases and bread firming-An integrated view. J Cereal Sci. 2009 Nov;50(3):345–352. https://doi.org/10.1016/j.jcs.2009.04.010
- Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: A biotechnological perspective. Proc Bio-chem. 2003 Jun;38(11):1599–1616. https://doi.org/10.1016/s0032-9592(03)00053-0
- Immonen M, Maina NH, Coda R, Katina K. 5 Upcycling of surplus bread using tailored biotransformation. In: Hakalehto E, editor. Microbiology of food quality: Challenges in food production and distribution during and after the pandemics. Berlin (Germany): de Gruyter; 2021. p. 99–106. https://doi.org/10.1515/9783110724967-006
- Jujjavarapu SE, Dhagat S. Evolutionary trends in industrial production of α-amylase. Recent Pat Biotechnol. 2019;13(1):4–18. https://doi.org/10.2174/2211550107666180816093436
- Kohli I, Joshi NC, Varma A. Production, purification and applications of raw starch degrading and calcium-independent α-amylase from soil rich in extremophile. Int J Biol Macromol. 2020 Nov;162:873–881. https://doi.org/10.1016/j.ijbiomac.2020.06.160
- Kumari S, Sarkar PK. Bacillus cereus hazard and control in industrial dairy processing environment. Food cont. 2016 Nov; 69:20–29. https://doi.org/10.1016/j.foodcont.2016.04.012
- Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug;227(5259):680–685. https://doi.org/10.1038/227680a0
- Mahmoud E, Ramadan M, Ismail MM, Fadel M, Abass M. Production of flavors from agro waste of Ocimumbasilicum L. by different microorganisms using solid state fermentation. Egyp. J Chem. 2022 Jul;65(7):259–273. https://doi.org/10.21608/ejchem.2021.103622.4794
- Ndochinwa OG, Wang QY, Amadi OC, Nwagu TN, Nnamchi CI, Moneke AN. Pullulanase functions in starch hydrolysis and the improvement of enzyme activity using active hydrogen bond network as method with potential industrial application of the enzyme. J Global Biosci. 2021;10(5):8685–8705.
- Ottone C, Romero O, Aburto C, Illanes A, Wilson L. Biocatalysis in the winemaking industry: Challenges and opportunities for immobilized enzymes. Compr Rev Food Sci Food Saf. 2020 Mar;19(2):595–621. https://doi.org/10.1111/1541-4337.12538
- Parmar FA, Patel JN, Upasani VN. Screening of microorganisms for production of therapeutic enzymes. Eur J Biotechnol Biosci. 2021;9(3):82–88.
- Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. Conformational dynamics and enzyme evolution. J R Soc Interface. 2018 Jul;15(144):20180330. https://doi.org/10.1098/rsif.2018.0330
- Prakash O, Jaiswal N. α-Amylase: An ideal representative of thermostable enzymes. Appl Biochem Biotechnol. 2010 Apr; 160(8): 2401–2414. https://doi.org/10.1007/s12010-009-8735-4
- Rasooli I, Astaneh SD, Borna H, Barchini KA. A thermostable α-amylase producing natural variant of Bacillus spp. isolated from soil in Iran. Am. J Agric Biol Sci. 2008 Sep;3(3):591–596. https://doi.org/10.3844/ajabssp.2008.591.596
- Sadeghian Motahar SF, Salami M, Ariaeenejad S, Emam-Djomeh Z, Sheykh Abdollahzadeh Mamaghani A, Kavousi K, Moghadam M, Hosseini Salekdeh G. Synergistic effect of metagenome-derived starch-degrading enzymes on quality of functional bread with antioxidant activity. Starch-Stärke. 2022 Jan;74(1–2):2100098. https://doi.org/10.1002/star.202100098
- Salem K, Elgharbi F, Ben Hlima H, Perduca M, Sayari A, Hmida-Sayari A. Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca2+ independent Bacillus subtilis α-amylase. Biotechnol Prog. 2020 Jul;36(4):e2964. https://doi.org/10.1002/btpr.2964
- Shirling ET, Gottlieb D. Methods for characterization of Strepto-myces species. Int J Syst Bacteriol. 1966 Jul;16(3):313–340. https://doi.org/10.1099/00207713-16-3-313
- Shirodkar PV, Muraleedharan UD, Damare S, Raghukumar S. A mesohaline thraustochytrid produces extremely halophilic alpha-amylases. Mar Biotechnol. 2020 Jun;22(3):403–410. https://doi.org/10.1007/s10126-020-09960-9
- Silaban S, Marika DB, Simorangkir M. Isolation and characterization of amylase-producing amylolytic bacteria from rice soil samples. J Phys Conf Ser. 2020;1485(1):012006 https://doi.org/10.1088/1742-6596/1485/1/012006
- Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov;22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673
- Timilsina PM, Pandey GR, Shrestha AS, Ojha M, Baral G, Karki TB. Purification and characterization of a noble thermostable alpha-amylase from Anoxybacillus tengchongensis RA1-2-1 isolated from geothermal spring of Nepal. J Food Sci Technol Nepal. 2020 Dec; 12(12):49–58. https://doi.org/10.3126/jfstn.v12i12.31038
- Williams S T, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG, editors. Bergey’s manual of systematic bacteriology. Baltimore (USA): Williams &, Wilkins; 1989. p. 2452–2492.