Have a personal or library account? Click to login
Studies on Secondary Metabolites of Streptomyces gossypiisoli TRM 44567 under the Guidance of OSMAC Strategy Cover

Studies on Secondary Metabolites of Streptomyces gossypiisoli TRM 44567 under the Guidance of OSMAC Strategy

Open Access
|Dec 2025

References

  1. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021 Jul; 49(W1):W29-W35. https://doi.org/10.1093/nar/gkab335
  2. Bode HB, Bethe B, Höfs R, Zeeck A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. Chembiochem. 2002 Jul;3(7):619-627. https://doi.org/10.1002/1439-7633(20020703)3:7619:: AID-CBIC619>3.0.CO;2-9
  3. Bundale S, Singh J, Begde D, Nashikkar N, Upadhyay A. Rare Actinobacteria: A potential source of bioactive polyketides and peptides. World J Microbiol Biotechnol. 2019 Jun;35(6):92. https://doi.org/10.1007/s11274-019-2668-z
  4. Carlson JC, Li S, Burr DA, Sherman DH. Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. J Nat Prod. 2009 Nov;72(11):2076-2079. https://doi.org/10.1021/np9005597
  5. Carlson JC, Li S, Gunatilleke SS, Anzai Y, Burr DA, Podust LM, Sherman DH. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes. Nat Chem. 2011 Jul;3(8):628-633. https://doi.org/10.1038/nchem.1087
  6. Cragg GM, Newman DJ. Natural products: Acontinuing source of novel drug leads. Biochim Biophys Acta. 2013 Jun;1830(6):3670-3695. https://doi.org/10.1016/j.bbagen.2013.02.008
  7. Crüsemann M. Coupling mass spectral and genomic information to improve bacterial natural product discovery workflows. Mar Drugs. 2021 Mar;19(3):142. https://doi.org/10.3390/md19030142
  8. Dhavan AA, Ionescu AC, Kaduskar RD, Brambilla E, Dallavalle S, Varoni EM, Iriti M. Antibacterial and antifungal activities of 2,3-pyrrolidinedione derivatives against oral pathogens. Bioorg Med Chem Lett. 2016 Mar;26(5):1376-1380. https://doi.org/10.1016/j.bmcl.2016.01.082
  9. Gao Y, Frank M, Teusch N, Woschko D, Janiak C, Mandi A, Kurtán T, Hartmann R, Schiedlauske K, van Geelen L, et al. Aplospojaveedins A-C, unusual sulfur-containing alkaloids produced by the endophytic fungus Aplosporella javeedii using OSMAC strategy. Front Microbiol. 2024 Sep;15:1458622. https://doi.org/10.3389/fmicb.2024.1458622
  10. Honorato L, Artunduaga Bonilla JJ, Ribeiro da Silva L, Kornetz J, Zamith-Miranda D, Valdez AF, Nosanchuk JD, Gonçalves Paterson Fox E, Nimrichter L. Alkaloids solenopsins from fire ants display in vitro and in vivo activity against the yeast Candida auris. Virulence. 2024 Dec;15(1):2413329. https://doi.org/10.1080/21505594.2024.2413329
  11. Jia F, Liu C, Zhao J, Zhang Y, Li L, Zhou S, Shen Y, Wang X, Xiang W. Streptomyces vulcanius sp. nov., a novel actinomycete isolated from volcanic sediment. Antonie Van Leeuwenhoek. 2015 Jan;107(1):15-21. https://doi.org/10.1007/s10482-014-0299-9
  12. Kim MC, Li Z, Cullum R, Molinski TF, Eid MAG, Hebishy AMS, Faraag AHI, Abdel Moneim AE, Abdelfattah MS, et al. Chlororesistoflavins A and B, chlorinated benzopyrene antibiotics produced by the marine-derived Actinomycete Streptomyces sp. Strain EG32. J Nat Prod. 2022 Jan 28;85(1):270-275. https://doi.org/10.1021/acs.jnatprod.1c01084
  13. Komaki H, Ichikawa N, Hosoyama A, Takahashi-Nakaguchi A, Matsuzawa T, Suzuki K, Fujita N, Gonoi T. Genome based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in seven strains of five representative Nocardia species. BMC Genomics. 2014 Apr;15(1):323. https://doi.org/10.1186/1471-2164-15-323
  14. Lee LH, Goh BH, Chan KG. Editorial: Actinobacteria: Prolific producers of bioactive metabolites. Front Microbiol. 2020a Aug;11:1612. https://doi.org/10.3389/fmicb.2020.01612
  15. Lee N, Hwang S, Kim J, Cho S, Palsson B, Cho BK. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput Struct Biotechnol J. 2020b Jun;18:1548-1556. https://doi.org/10.1016/j.csbj.2020.06.024
  16. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018 Jun;2(6):936-943. https://doi.org/10.1038/s41559-018-0519-1
  17. Mo X, Wang Z, Wang B, Ma J, Huang H, Tian X, Zhang S, Zhang C, Ju J. Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666. Biochem Biophys Res Commun. 2011 Mar;406(3):341-347. https://doi.org/10.1016/j.bbrc.2011.02.040
  18. Olanrewaju OS, Babalola OO. Streptomyces: Implications and interactions in plant growth promotion. Appl Microbiol Biotechnol. 2019 Feb;103(3):1179-1188. https://doi.org/10.1007/s00253-018-09577-y
  19. Pannakal ST, Eilstein J, Hubert J, Kotland A, Prasad A, Gueguiniat-Prevot A, Juchaux F, Beaumard F, Seru G, John S, et al. Rapid chemical profiling of Filipendula ulmaria Using CPC fractionation, 2-D mapping of 13C NMR data, and high-resolution LC-MS. Molecules. 2023 Aug;28(17):6349. https://doi.org/10.3390/molecules28176349
  20. Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J Med Microbiol. 2020 Aug;69(8):1040-1048. https://doi.org/10.1099/jmm.0.001232
  21. Rateb ME, Yu Z, Yan Y, Yang D, Huang T, Vodanovic-Jankovic S, Kron MA, Shen B. Medium optimization of Streptomyces sp. 17944 for tirandamycin B production and isolation and structural elucidation of tirandamycins H, I and J. J Antibiot. 2014 Jan;67(1):127-132. https://doi.org/10.1038/ja.2013.50
  22. Reusser F. Tirandamycin, an inhibitor of bacterial ribonucleic acid polymerase. Antimicrob Agents Chemother. 1976 Oct;10(4):618-622. https://doi.org/10.1128/aac.10.4.618
  23. Reusser F. Tirandamycin: Inhibition of oxidative phosphorylation in rat liver mitochondria. Infect Immun. 1970 Jul;2(1):82-88. https://doi.org/10.1128/iai.2.1.82-88.1970
  24. Risdian C, Mozef T, Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms. 2019 May;7(5):124. https://doi.org/10.3390/microorganisms7050124
  25. Schiewe HJ, Zeeck A. Cineromycins, γ-butyrolactones and ansamycins by analysis of the secondary metabolite pattern created by a single strain of Streptomyces. J Antibiot. 1999 Jul;52(7):635-642. https://doi.org/10.7164/antibiotics.52.635
  26. Sedeek AM, Ismail MM, Elsayed TR, Ramadan MA. Recent methods for discovering novel bioactive metabolites, specifically antimicrobial agents, from marine-associated micro-organisms. Lett Appl Microbiol. 2022 Sep;75(3):511-525. https://doi.org/10.1111/lam.13728
  27. Sedeek AM, Salah I, Kamel HL, Soltan MA, Nour E, Alshammari A, Riaz Rajoka MS, Elsayed TR. Genome-based analysis of the potential bioactivity of the terrestrial Streptomyces vinaceusdrappus strain AC-40. Biology. 2023 Feb;12(3):345. https://doi.org/10.3390/biology12030345
  28. Tuske S, Sarafianos SG, Wang X, Hudson B, Sineva E, Mukhopadhyay J, Birktoft JJ, Leroy O, Ismail S, Clark AD Jr, et al. Inhibition of bacterial RNA polymerase by streptolydigin: Stabilization of a straight-bridge-helix active-center conformation. Cell. 2005 Aug; 122(4):541-552. https://doi.org/10.1016/j.cell.2005.07.017
  29. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163-175. https://doi.org/10.1038/nprot.2007.521
  30. Yu Z, Vodanovic-Jankovic S, Ledeboer N, Huang SX, Rajski SR, Kron M, Shen B. Tirandamycins from Streptomyces sp. 17944 inhibiting the parasite Brugia malayi asparagine tRNA synthetase. Org Lett. 2011 Apr;13(8):2034-2037. https://doi.org/10.1021/ol200420u
  31. Zhang QY, Qin S, Luo XX, Xia ZF. Streptomyces gossypiisoli sp. nov., isolated from cotton soil in Xinjiang, PR China. Int J Syst Evol Microbiol. 2021 Jan;71(1). https://doi.org/10.1099/ijsem.0.004561
  32. Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem. 2024 Mar 15;268:116175. https://doi.org/10.1016/j.ejmech.2024.116175
DOI: https://doi.org/10.33073/pjm-2025-001 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 407 - 415
Submitted on: Aug 28, 2024
|
Accepted on: Nov 24, 2024
|
Published on: Dec 26, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 YI HUANG CHEN, CHANG LI, LI XING, MIAO XU, YANG LIU, REN MIN, XIAO-XIA LUO, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.