References
- Ali Z, Wang Z, Amir RM, Younas S, Wali A, Adowa N, Ayim I. Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res. 2016 Jun;86(3–4):127–151. https://doi.org/10.1024/0300-9831/a000440
- Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010 Oct;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106
- Andrés-Barrao C, Saad MM, Chappuis ML, Boffa M, Perret X, Ortega Pérez R, Barja F. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J Proteomics. 2012 Mar; 75(6):1701–1717. https://doi.org/10.1016/j.jprot.2011.11.027
- Benjak A, Uplekar S, Zhang M, Piton J, Cole ST, Sala C. Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b. BMC Genomics. 2016 Dec; 17(1):190. https://doi.org/10.1186/s12864-016-2528-2
- Chen Y, Bai Y, Li D, Wang C, Xu N, Hu Y. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei. World J Microbiol Biotechnol. 2016 Jan;32(1):14. https://doi.org/10.1007/s11274-015-1961-8
- Chinnawirotpisan P, Theeragool G, Limtong S, Toyama H, Adachi OO, Matsushita K. Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108. J Biosci Bioeng. 2003 Jan;96(6):564–571. https://doi.org/10.1016/S1389-1723(04)70150-4
- Clauss-Lendzian E, Vaishampayan A, de Jong A, Landau U, Meyer C, Kok J, Grohmann E. Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating. Microbiol Res. 2018 Mar;207:53–64. https://doi.org/10.1016/j.micres.2017.11.006
- Confer AW, Ayalew S. The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Vet Microbiol. 2013 May;163 (3–4):207–222. https://doi.org/10.1016/j.vetmic.2012.08.019
- Filiatrault MJ. Progress in prokaryotic transcriptomics. Curr Opin Microbiol. 2011 Oct;14(5):579–586. https://doi.org/10.1016/j.mib.2011.07.023
- Fukaya M, Takemura H, Tayama K, Okumura H, Kawamura Y, Horinouchi S, Beppu T. The aarC gene responsible for acetic acid assimilation confers acetic acid resistance on Acetobacter aceti. J Ferment Bioeng. 1993 Jan;76(4):270–275. https://doi.org/10.1016/0922-338X(93)90192-B
- Ganguly B, Tewari K, Singh R. Homology modeling, functional annotation and comparative genomics of outer membrane protein H of Pasteurella multocida. J Theor Biol. 2015 Dec;386:18–24. https://doi.org/10.1016/j.jtbi.2015.08.028
- Gil F, Hernández-Lucas I, Polanco R, Pacheco N, Collao B, Villarreal JM, Nardocci G, Calva E, Saavedra CP. SoxS regulates the expression of the Salmonella enterica serovar Typhimurium ompW gene. Microbiology. 2009 Aug 01;155(8):2490–2497. https://doi.org/10.1099/mic.0.027433-0
- Gomes RJ, Borges MF, Rosa MF, Castro-Gómez RJH, Spinosa WA. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technol Biotechnol. 2018;56(2):139–151. https://doi.org/10.17113/ftb.56.02.18.5593
- Goto H, Masuko M, Ohnishi M, Tsukamoto Y. [Comparative analysis of phospholipids for two Acetobacters producing acetic acid at high and moderate concentrations] (in Japanese). J Jpn Oil Chem Soc. 2000;49:349–355, 390. https://doi.org/10.5650/jos1996.49.349
- Gullo M, Verzelloni E, Canonico M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: process and biotechnological aspects. Process Biochem. 2014 Oct;49(10):1571–1579. https://doi.org/10.1016/j.procbio.2014.07.003
- Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988 May;333(6171):330–334. https://doi.org/10.1038/333330a0
- Higashide T, Okumura H, Kawamura Y, Teranishi K, Hisamatsu M, Yamada T. [Membrane components and cell form of Acetobactor polyoxogenes (vinegar producing strain) under high acidic conditions] (in Japanese). Nippon Shokuhin Kagaku Kogaku Kaishi. 1996;43(2):117–123. https://doi.org/10.3136/nskkk.43.117
- Hong H, Patel DR, Tamm LK, van den Berg B. The outer membrane protein OmpW forms an eight-stranded β-barrel with a hydrophobic channel. J Biol Chem. 2006 Mar;281(11):7568–7577. https://doi.org/10.1074/jbc.M512365200
- Kondo K, Beppu T, Horinouchi S. Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus. J Bacteriol. 1995 Sep;177(17):5048–5055. https://doi.org/10.1128/jb.177.17.5048-5055.1995
- Matsushita K, Toyama H, Adachi O. Chapter 4: Respiratory chains in acetic acid bacteria: membranebound periplasmic sugar and alcohol respirations. In: Zannoni D, editor. Respiration in Archaea and Bacteria. Advances in photosynthesis and respiration, vol. 16. Dordrecht (The Netherlands): Springer; 2004. p. 81–99. https://doi.org/10.1007/978-1-4020-3163-2_4
- Mullins EA, Francois JA, Kappock TJ. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol. 2008 Jul 15;190(14):4933–4940. https://doi.org/10.1128/JB.00405-08
- Nakano S, Fukaya M, Horinouchi S. Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti. FEMS Microbiol Lett. 2004 Jun;235(2):315–322. https://doi.org/10.1111/j.1574-6968.2004.tb09605.x
- Nguyen VD, Wolf C, Mäder U, Lalk M, Langer P, Lindequist U, Hecker M, Antelmann H. Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds in Bacillus subtilis. Proteomics. 2007 May;7(9):1391–1408. https://doi.org/10.1002/pmic.200700008
- Okamoto-Kainuma A, Ishikawa M, Nakamura H, Fukazawa S, Tanaka N, Yamagami K, Koizumi Y. Characterization of rpoH in Acetobacter pasteurianus NBRC3283. J Biosci Bioeng. 2011 Apr;111(4):429–432. https://doi.org/10.1016/j.jbiosc.2010.12.016
- Okamoto-Kainuma A, Yan W, Kadono S, Tayama K, Koizumi Y, Yanagida F. Cloning and characterization of groESL operon in Acetobacter aceti. J Biosci Bioeng. 2002;94(2):140–147. https://doi.org/10.1016/S1389-1723(02)80134-7
- Qi Z, Yang H, Xia X, Quan W, Wang W, Yu X. Achieving high strength vinegar fermentation via regulating cellular growth status and aeration strategy. Process Biochem. 2014 Jul;49(7):1063–1070. https://doi.org/10.1016/j.procbio.2014.03.018
- Qiu X, Zhang Y, Hong H. Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express. 2021 Dec;11(1):29. https://doi.org/10.1186/s13568-021-01189-6
- Ryngajłło M, Jacek P, Cielecka I, Kalinowska H, Bielecki S. Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Appl Microbiol Biotechnol. 2019 Aug;103(16):6673–6688. https://doi.org/10.1007/s00253-019-09904-x
- Sakurai K, Arai H, Ishii M, Igarashi Y. Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology. 2011 Mar 01;157(3):899–910. https://doi.org/10.1099/mic.0.045906-0
- Samad A, Azlan A, Ismail A. Therapeutic effects of vinegar: a review. Curr Opin Food Sci. 2016 Apr;8:56–61. https://doi.org/10.1016/j.cofs.2016.03.001
- Tesfaye W, Morales ML, García-Parrilla MC, Troncoso AM. Wine vinegar: technology, authenticity and quality evaluation. Trends Food Sci Technol. 2002 Jan;13(1):12–21. https://doi.org/10.1016/S0924-2244(02)00023-7
- Tjaden B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol. 2015 Dec;16(1):1. https://doi.org/10.1186/s13059-014-0572-2
- Toyama H, Mathews FS, Adachi O, Matsushita K. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys. 2004 Aug;428(1):10–21. https://doi.org/10.1016/j.abb.2004.03.037
- Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2010;28(5):511–515. https://doi.org/10.1038/nbt.1621
- Trček J, Mira NP, Jarboe LR. Adaptation and tolerance of bacteria against acetic acid. Appl Microbiol Biotechnol. 2015 Aug;99(15):6215–6229. https://doi.org/10.1007/s00253-015-6762-3
- Trcek J, Toyama H, Czuba J, Misiewicz A, Matsushita K. Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol. 2006 Apr;70(3):366–373. https://doi.org/10.1007/s00253-005-0073-z
- Wang B, Shao Y, Chen F. Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J Microbiol Biotechnol. 2015 Feb;31(2):255–263. https://doi.org/10.1007/s11274-015-1799-0
- Wu X, Yao H, Cao L, Zheng Z, Chen X, Zhang M, Wei Z, Cheng J, Jiang S, Pan L, et al. Improving acetic acid production by Over-Expressing PQQ-ADH in Acetobacter pasteurianus. Front Microbiol. 2017 Sep 06;8:1713. https://doi.org/10.3389/fmicb.2017.01713
- Xia K, Zang N, Zhang J, Zhang H, Li Y, Liu Y, Feng W, Liang X. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis. Int J Food Microbiol. 2016 Dec;238:241–251. https://doi.org/10.1016/j.ijfoodmicro.2016.09.016
- Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Nakagawa Y. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann Microbiol. 2012 Jun;62(2):849–859. https://doi.org/10.1007/s13213-011-0288-4
- Yang H, Yu Y, Fu C, Chen F. Bacterial acid resistance toward organic weak acid revealed by RNA-Seq transcriptomic analysis in Acetobacter pasteurianus. Front Microbiol. 2019 Aug 6;10:1616. https://doi.org/10.3389/fmicb.2019.01616
- Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14
- Zhai L, Xue Y, Song Y, Xian M, Yin L, Zhong N, Xia G, Ma Y. Overexpression of AaPal, a peptidoglycan-associated lipoprotein from Alkalomonas amylolytica, improves salt and alkaline tolerance of Escherichia coli and Arabidopsis thaliana. Biotechnol Lett. 2014 Mar;36(3):601–607. https://doi.org/10.1007/s10529-013-1398-9