Have a personal or library account? Click to login
Chemotaxis Toward Crude Oil by an Oil-Degrading Pseudomonas aeruginosa 6-1B Strain Cover

Chemotaxis Toward Crude Oil by an Oil-Degrading Pseudomonas aeruginosa 6-1B Strain

Open Access
|Mar 2021

References

  1. Batista SB, Mounteer AH, Amorim FR, Tótola MR. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour Technol. 2006 Apr;97(6):868–875. https://doi.org/10.1016/j.biortech.2005.04.020
  2. Boudko D, Yu HS, Ruiz M, Hou S, Alam M. A time-lapse capillary assay to study aerotaxis in the archaeon Halobacterium salinarum. J Microbiol Methods. 2003 Apr;53(1):123–126. https://doi.org/10.1016/s0167-7012(02)00227-0
  3. Brown LR. Microbial enhanced oil recovery (MEOR). Curr Opin Microbiol. 2010 Jun;13(3):316–320. https://doi.org/10.1016/j.mib.2010.01.011
  4. Bruinsma GM, van der Mei HC, Busscher HJ. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials. 2001 Dec;22(24):3217–3224. https://doi.org/10.1016/s0142-9612(01)00159-4
  5. Dan L, Lei H, Guo-Qiang L, Zhao-Yu L, Ting M, Feng-Lai L, Ru-Lin L. [Study on the bioemulsifier produced by a hydrocarbon-degrading strain T7-2 and its physic-chemical properties] (In Chinese). Microbiol China. 2008;35(5):0653–0660.
  6. Gandhimathi R, Seghal Kiran G, Hema TA, Selvin J, Rajeetha Raviji T, Shanmughapriya S. Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst Eng. 2009 Oct; 32(6):825–835. https://doi.org/10.1007/s00449-009-0309-x
  7. Gomes DLR, Peixoto RS, Barbosa EAB, Napoleão F, Sabbadini PS, Dos Santos KRN, Mattos-Guaraldi AL, Hirata R. Sub-MICs of penicillin and erythromycin enhance biofilm formation and hydrophobicity of Corynebacterium diphtheriae strains. J Med Microbiol. 2013 May;62(Pt 5):754–760. https://doi.org/10.1099/jmm.0.052373-0
  8. Ha DG, Kuchma SL, O’Toole GA. Plate-based assay for swarming motility in Pseudomonas aeruginosa. Methods Mol Biol. 2014; 1149: 67–72. https://doi.org/10.1007/978-1-4939-0473-0_8
  9. Head IM, Jones DM, Larter SR. Biological activity in the deep subsurface and the origin of heavy oil. Nature. 2003 Nov 20;426(6964): 344–352. https://doi.org/10.1038/nature02134
  10. Huang L, Li D, Sun D, Xie YJ, Ma T, Liang FL, Liu RL. [Isolation and identification of a low temperature hydrocarbon-degrading strain and its degradation characteristics] (In Chinese). Huan Jing Ke Xue. 2007 Sep;28(9):2101–2105.
  11. Kryachko Y. Novel approaches to microbial enhancement of oil recovery. J Biotechnol. 2018 Jan 20;266:118–123. https://doi.org/10.1016/j.jbiotec.2017.12.019
  12. Lanfranconi MP, Alvarez HM, Studdert CA. A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ Microbiol. 2003 Oct;5(10):1002–1008. https://doi.org/10.1046/j.1462-2920.2003.00507.x
  13. Law AM, Aitken MD. Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol. 2003 Oct; 69(10):5968–5973. https://doi.org/10.1128/aem.69.10.5968-5973.2003
  14. Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ Pollut. 2018 Oct;241:254–264. https://doi.org/10.1016/j.envpol.2018.05.070
  15. Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay JH. The influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol. 2004 Jun 10;110(3):251–256. https://doi.org/10.1016/j.jbiotec.2004.02.012
  16. Marx RB, Aitken MD. Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol. 2000 Jul;34(16):3379–3383. https://doi.org/10.1021/es000904k
  17. Meng L, Li W, Bao M, Sun P. Great correlation: Biodegradation and chemotactic adsorption of Pseudomonas synxantha LSH-7’ for oil contaminated seawater bioremediation. Water Res. 2019 Apr 15;153: 160–168. https://doi.org/10.1016/j.watres.2019.01.021
  18. Nakamura S, Minamino T. Flagella-driven motility of bacteria. Biomolecules. 2019 Jul 14;9(7):279. https://doi.org/10.3390/biom9070279
  19. Ni B, Colin R, Link H, Endres RG, Sourjik V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc Natl Acad Sci USA. 2020 Jan 7;117(1):595–601. https://doi.org/10.1073/pnas.1910849117
  20. Pandey G, Jain RK. Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol. 2002 Dec;68(12):5789–5795. https://doi.org/10.1128/aem.68.12.5789-5795.2002
  21. Parales RE, Harwood CS. Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol. 2002 Jun; 5(3):266–273. https://doi.org/10.1016/s1369-5274(02)00320-x
  22. Patowary K, Patowary R, Kalita MC, Deka S. Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol. 2017 Feb 22;8:279. https://doi.org/10.3389/Fmicb.2017.00279
  23. Pedit JA, Marx RB, Miller CT, Aitken MD. Quantitative analysis of experiments on bacterial chemotaxis to naphthalene. Biotechnol Bioeng. 2002 Jun 20;78(6):626–634. https://doi.org/10.1002/bit.10244
  24. Rocha VAL, de Castilho LVA, de Castro RPV, Teixeira DB, Magalhães AV, Gomez JGC, Freire DMG. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Biotechnol Prog. 2020 Jul;36(4):e2981. https://doi.org/10.1002/btpr.2981
  25. Roggo C, Clerc EE, Hadadi N, Carraro N, Stocker R, van der Meer JR. Heterologous expression of Pseudomonas putida methyl-accepting chemotaxis proteins yields Escherichia coli cells chemotactic to aromatic compounds. Appl Environ Microbiol. 2018 Aug 31;84(18):e01362-18. https://doi.org/10.1128/AEM.01362-18
  26. Sampedro I, Parales RE, Krell T, Hill JE. Pseudomonas chemotaxis. FEMS Microbiol Rev. 2015 Jan;39(1):17–46. https://doi.org/10.1111/1574-6976.12081
  27. Vardar G, Barbieri P, Wood TK. Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Appl Microbiol Biotechnol. 2005 Mar;66(6):696–701. https://doi.org/10.1007/s00253-004-1685-4
  28. Waite AJ, Frankel NW, Emonet T. Behavioral variability and phenotypic diversity in bacterial chemotaxis. Annu Rev Biophys. 2018 May 20;47:595–616. https://doi.org/10.1146/annurev-biophys-062215-010954
  29. Yang J, Chawla R, Rhee KY, Gupta R, Manson MD, Jayaraman A, Lele PP. Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proc Natl Acad Sci USA. 2020 Mar 17;117(11): 6114–6120. https://doi.org/10.1073/pnas.1916974117
  30. Zheng M, Wang W, Papadopoulos K. Direct visualization of oil degradation and biofilm formation for the screening of crude oil-degrading bacteria. Bioremediat J. 2020;24(1):60–70. https://doi.org/10.1080/10889868.2019.1671795
  31. Zita A, Hermansson M. Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl Environ Microbiol. 1997 Mar;63(3):1168–70. https://doi.org/10.1128/AEM.63.3.1168-1170.1997
DOI: https://doi.org/10.33073/pjm-2021-006 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 69 - 78
Submitted on: Oct 16, 2020
Accepted on: Jan 17, 2021
Published on: Mar 19, 2021
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 KAIQIANG LIANG, RUIMIN GAO, CHENGJUN WANG, WEIBO WANG, WEI YAN, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.