Have a personal or library account? Click to login
Isolated Phosphate-Solubilizing Soil Bacteria Promotes In vitro Growth of Solanum tuberosum L. Cover

Isolated Phosphate-Solubilizing Soil Bacteria Promotes In vitro Growth of Solanum tuberosum L.

Open Access
|Sep 2020

References

  1. Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res. 2008 Mar;163(2):173–181. https://doi.org/10.1016/j.micres.2006.04.001
  2. Balemi T. Effect of phosphorus nutrition on growth of potato genotypes with contrasting phosphorus efficiency. Afr Crop Sci J. 2009;17(4):199–212.
  3. Banerjee S, Palit R, Sengupta C, Standing D. Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci. 2010;4(6):378–383.
  4. Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002 May;154(2):275–304. https://doi.org/10.1046/j.1469-8137.2002.00397.x
  5. Calvo P, Ormeño-Orrillo E, Martínez-Romero E, Zúñiga D. Characterization of Bacillus isolates of potato rhizosphere from andean soils of Peru and their potential PGPR characteristics. Braz J Microbiol. 2010 Dec;41(4):899–906. https://doi.org/10.1590/S1517-83822010000400008
  6. Casas A, Lasa JM. Multiplicación “in vitro” en remolacha azucarera (Beta vulgaris L.) II. Vitrificación del material. Anales Aula Dei. 1986;18(1–2):57–63.
  7. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol. 2006 Nov;34(1): 33–41. https://doi.org/10.1016/j.apsoil.2005.12.002
  8. Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils. 2010 Sep;46(7):727–738. https://doi.org/10.1007/s00374-010-0480-x
  9. Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci. 2013 Dec;58(2):195–201. https://doi.org/10.1016/j.aoas.2013.07.007
  10. Dechassa N, Schenk MK. Exudation of organic anions by roots of cabbage, carrot, and potato as influenced by environmental factors and plant age. J Plant Nutr Soil Sci. 2004 Oct;167(5):623–629. https://doi.org/10.1002/jpln.200420424
  11. Espinoza NO, Estrada R, Silva-Rodríguez D, Tovar P, Lizarraga R, Dodds JH. The potato: a model crop plant for tissue culture. Outlook Agric. 1986 Mar;15(1):21–26. https://doi.org/10.1177/003072708601500104
  12. Hanif MK, Hameed S, Imran A, Naqqash T, Shahid M, Van Elsas JD. Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.). Front Microbiol. 2015 Jun 09;06:583. https://doi.org/10.3389/fmicb.2015.00583
  13. Ibrahim IA, Emara HA, Nower AA, Abodiab AY. In vitro cultivation of potato plants. Int J Curr Microbiol Appl Sci. 2016 Dec 15;5(12):858–868. https://doi.org/10.20546/ijcmas.2016.512.094
  14. Ingle KP, Padole DA. Phosphate solubilizing microbes: An overview. Int J Curr Microbiol Appl Sci. 2017 Jan 15;6(1):844–852. https://doi.org/10.20546/ijcmas.2017.601.099
  15. Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro HN, editors. Mammalian protein metabolism. New York (USA): Academic Press; 1969. p. 21–132.
  16. Liu H, Wang Z, Xu W, Zeng J, Li L, Li S, Gao Z. Bacillus pumilus LZP02 promotes rice root growth by improving carbohydrate metabolism and phenylpropanoid biosynthesis. Mol Plant Microbe Interact. 2020 Aug 11. https://doi.org/10.1094/MPMI-04-20-0106-R
  17. Ma Z, Bielenberg DG, Brown KM, Lynch JP. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ. 2001 Apr;24(4):459–467. https://doi.org/10.1046/j.1365-3040.2001.00695.x
  18. Mora-Herrera ME, López-Delgado H, Castillo-Morales A, Foyer CH. Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiol Plant. 2005;125:430–440. https://doi.org/10.1111/j.1399-3054.2005.00572.x
  19. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 1962 Jul;15(3): 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5
  21. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999 Jan;170(1):265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  22. Okazaki S, Sano N, Yamada T, Ishii K, Kojima K, Djedidi S, Artigas-Ramírez MD, Yuan K, Kanekatsu M, Ohkama-Ohtsu N, et al. Complete genome sequence of plant growth promoting Bacillus pumilus TUAT1. Microbiol Resour Announc. 2019.8:e00076-19. https://doi.org/10.1128/MRA.00076-19
  23. Paul D, Sinha SN. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Annals of Agrarian Science. 2017 Mar;15(1):130–136. https://doi.org/10.1016/j.aasci.2016.10.001
  24. Prathap M, Ranjitha KBD. A critical review on plant growth promoting rhizobacteria. J Plant Pathol Microbiol. 2015;6(4):1–4.
  25. Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J. Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol. 2011 Aug;62(2):435–445. https://doi.org/10.1007/s00248-011-9827-6
  26. Prieto-Correal GC, Prada-Salcedo LD, Cuervo C, Franco-Correa M. Evaluation of organic acid production by Streptomyces spp. and solubilization of three phosphorus sources by strain T3A. Rev Colomb Biotecnologia. 2015;17(1):111.
  27. Richardson AE, Hocking PJ, Simpson RJ, George TS. Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci. 2009;60(2):124–143. https://doi.org/10.1071/CP07125
  28. Richardson AE. Prospects for using soil microorganism to improve the acquisition of phosphorus by plants. Aust J Plant Physiol. 2001; 28:897–906.
  29. Rodríguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 1999 Oct;17(4–5): 319–339. https://doi.org/10.1016/S0734-9750(99)00014-2
  30. Rout GR. Effect of cytokinins and auxin on micropropagation of Clitoria ternatea L. Biol Lett. 2004;41(1):21–26.
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4): 406–425.
  32. Sashidhar B, Podile AR. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol. 2010 Jan;109(1):1–12. https://doi.org/10.1111/j.1365-2672.2009.04654.x
  33. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2013 Dec;2(1):587. https://doi.org/10.1186/2193-1801-2-587
  34. Sivasakthi S, Usharani G, Saranraj P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. Afr J Agric Res. 2014;9(16):1265–1277.
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013 Dec;30(12):2725–2729. https://doi.org/10.1093/molbev/mst197
  36. Trdan S, Vučajnk F, Bohinc T, Vidrih M. The effect of a mixture of two plant growth-promoting bacteria from Argentina on the yield of potato, and occurrence of primary potato diseases and pest – short communication. Acta Agric Scand B Soil Plant Sci. 2019 Jan 02;69(1):89–94. https://doi.org/10.1080/09064710.2018.1492628
  37. Wang YL, Almvik M, Clarke N, Eich-Greatorex S, Øgaard AF, Krogstad T, Lambers H, Clarke JL. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AoB Plants. 2015;7:plv097. https://doi.org/10.1093/aobpla/plv097
  38. Wani PA, Khan MS, Zaidi A. Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci. 2007 Apr;170(2):283–287. https://doi.org/10.1002/jpln.200620602
  39. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991; 173(2):697–703. https://doi.org/10.1128/JB.173.2.697-703.1991
  40. Xie Z, Chu Y, Zhang W, Lang D, Zhang X. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environ Exp Bot. 2019 Feb;158:99–106. https://doi.org/10.1016/j.envexpbot.2018.11.021
  41. Zaidi A, Khan MS. Stimulatory effects of dual inoculation with phosphate solubilising microorganisms and arbuscular mycorrhizal fungus on chickpea. Aust J Exp Agric. 2007;47(8):1016–1022. https://doi.org/10.1071/EA06046
  42. Ziv M. Vitrification: morphological and physiological disorder of in vitro plants. In: Debergh PC, Zimmerman RH, editors. Micropropagation: Technology and application. London (UK): Kluwer Academic Publishers; 1993. p. 45–69.
DOI: https://doi.org/10.33073/pjm-2020-039 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 357 - 365
Submitted on: Jun 4, 2020
Accepted on: Aug 15, 2020
Published on: Sep 8, 2020
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 GUSTAVO YAÑEZ-OCAMPO, MARTHA E. MORA-HERRERA, ARNOLDO WONG-VILLARREAL, DENISSE M. DE LA PAZ-OSORIO, NADIA DE LA PORTILLA-LÓPEZ, JORGE LUGO, ROCIO VACA-PAULÍN, PEDRO DEL ÁGUILA, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.