References
- Amaretti A, Di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biot. 2013; 97(2): 809–817. https://doi.org/10.1007/s00253-012-4241-7
- Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K. Methods for testing antioxidant activity. Analyst (Lond). 2002 Jan 10;127(1):183–198. https://doi.org/10.1039/b009171p
- Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ, Tassou CC. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 2013 Apr;33(2):282–291. https://doi.org/10.1016/j.fm.2012.10.005
- Arnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000 Oct; 267(20): 6102–6109. https://doi.org/10.1046/j.1432-1327.2000.01701.x
- Chaplin AV, Shkoporov AN, Efimov BA, Pikina AP, Borisova OY, Gladko IA, Postnikova EA, Lordkipanidze AE, Kafarskaia LI. Draft genome sequence of Lactobacillus fermentum NB-22. Genome Announc. 2015 Aug 27;3(4):e00896-15. https://doi.org/10.1128/genomeA.00896-15
- Ding W, Wang L, Zhang J, Ke W, Zhou J, Zhu J, Guo X, Long R. Characterization of antioxidant properties of lactic acid bacteria isolated from spontaneously fermented yak milk in the Tibetan Plateau. J Funct Foods. 2017 Aug;35:481–488. https://doi.org/10.1016/j.jff.2017.06.008
- Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutation Research/DNAging. 1992 Sep;275(3–6):331–342. https://doi.org/10.1016/0921-8734(92)90036-O
- Esposito LA, Kokoszka JE, Waymire KG, Cottrell B, MacGregor GR, Wallace DC. Mitochondrial oxidative stress in mice lacking the glutathione peroxidase-1 gene. Free Radic Biol Med. 2000 Mar; 28(5):754–766. https://doi.org/10.1016/S0891-5849(00)00161-1
- Garcia-Castillo V, Komatsu R, Clua P, Indo Y, Takagi M, Salva S, Islam MA, Alvarez S, Takahashi H, Garcia-Cancino A, et al. Evaluation of the immunomodulatory activities of the probiotic strain Lactobacillus fermentum UCO-979C. Front Immunol. 2019 Jun 13;10:1376. https://doi.org/10.3389/fimmu.2019.01376
- Ho SC, Liu JH, Wu RY. Establishment of the mimetic aging effect in mice caused by D-galactose. Biogerontology. 2003;4(1):15–18. https://doi.org/10.1023/A:1022417102206
- Huang Y, Adams MC. In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol. 2004 Mar;91(3):253–260. https://doi.org/10.1016/j.ijfoodmicro.2003.07.001
- Jamalifar H, Bigdeli B, Nowroozi J, Zolfaghari HS, Fazeli MR. Selection for autochthonous bifidobacteial isolates adapted to simulated gastrointestinal fluid. Daru. 2010;18(1):57–66.
- Kant R, Blom J, Palva A, Siezen RJ, de Vos WM. Comparative genomics of Lactobacillus. Microb Biotechnol. 2011 May;4(3):323–332. https://doi.org/10.1111/j.1751-7915.2010.00215.x
- Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr. 2003 Aug;90(2):449–456. https://doi.org/10.1079/BJN2003896
- Kurien BT, Hensley K, Bachmann M, Scofield RH. Oxidatively modified autoantigens in autoimmune diseases. Free Radic Biol Med. 2006 Aug 15;41(4):549–556. https://doi.org/10.1016/j.freeradbiomed.2006.05.020
- Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006 Oct;443(7113):787–795. https://doi.org/10.1038/nature05292
- Lin Q, Li D, Qin H. Molecular cloning, expression, and immobilization of glutamate decarboxylase from Lactobacillus fermentum YS2. Electron J Biotechnol. 2017 May;27:8–13. https://doi.org/10.1016/j.ejbt.2017.03.002
- Lin X, Xia Y, Wang G, Xiong Z, Zhang H, Lai F, Ai L. Lactobacillus plantarum AR501 alleviates the oxidative stress of D-galactose-induced oxidative stress model liver by upregulation of Nrf2-mediated antioxidant enzyme expression. J Food Sci. 2018a;83(7): 1990–1998. https://doi.org/10.1111/1750-3841.14200
- Lin X, Xia Y, Wang G, Yang Y, Xiong Z, Lv F, Zhou W, Ai L. Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Front Microbiol. 2018b Nov 6;9: 2684. https://doi.org/10.3389/fmicb.2018.02684
- Maldonado J, Cañabate F, Sempere L, Vela F, Sánchez AR, Narbona E, López-Huertas E, Geerlings A, Valero AD, Olivares M, et al. Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J Pediatr Gastroenterol Nutr. 2012 Jan;54(1):55–61. https://doi.org/10.1097/MPG.0b013e3182333f18
- Mikelsaar M, Zilmer M. Lactobacillus fermentum ME-3 – an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis. 2009 Apr;21(1):1–27.
- Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J. Probiotics as potential antioxidants: a systematic review. J Agric Food Chem. 2015 Apr 15;63(14):3615–3626. https://doi.org/10.1021/jf506326t
- Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: A mini-review. Molecules. 2017 Jul 26;22(8):1255. https://doi.org/10.3390/molecules22081255
- Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem. 1997 Jul 01; 43(7):1209–1214. https://doi.org/10.1093/clinchem/43.7.1209
- Nordberg J, Arnér ESJ. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001 Dec;31(11):1287–1312. https://doi.org/10.1016/S0891-5849(01)00724-9
- Nyström T. The free-radical hypothesis of aging goes prokaryotic. Cell Mol Life Sci. 2003;60(7):1333–1341. https://doi.org/10.1007/s00018-003-2310-X
- Pan DD, Zeng XQ, Yan YT. Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. J Sci Food Agric. 2011 Feb;91(3):512–518. https://doi.org/10.1002/jsfa.4214
- Persichetti E, De Michele A, Codini M, Traina G. Antioxidative capacity of Lactobacillus fermentum LF31 evaluated in vitro by oxygen radical absorbance capacity assay. Nutrition. 2014 Jul;30 (7–8):936–938. https://doi.org/10.1016/j.nut.2013.12.009
- Preiser JC. Oxidative stress. J pen-Parenter Enter. 2012;36(2):147–154.
- Russo P, Iturria I, Mohedano ML, Caggianiello G, Rainieri S, Fiocco D, Spano G. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biot. 2015 Apr;99(8):3479–3490. https://doi.org/10.1007/s00253-014-6351-x
- Sharma R, Kapila R, Kapasiya M, Saliganti V, Dass G, Kapila S. Dietary supplementation of milk fermented with probiotic Lactobacillus fermentum enhances systemic immune response and antioxidant capacity in aging mice. Nutr Res. 2014 Nov;34(11):968–981. https://doi.org/10.1016/j.nutres.2014.09.006
- Suo H, Zhao X, Qian Y, Sun P, Zhu K, Li J, Sun B. Lactobacillus fermentum Suo attenuates HCl/ethanol induced gastric injury in mice through its antioxidant effects. Nutrients. 2016 Mar 10;8(3): 155. https://doi.org/10.3390/nu8030155
- Tang W, Xing Z, Hu W, Li C, Wang J, Wang Y. Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Appl Microbiol Biotechnol. 2016 Aug; 100(16): 7193–7202. https://doi.org/10.1007/s00253-016-7581-x
- Tang W, Xing Z, Li C, Wang J, Wang Y. Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chem. 2017 Apr;221:1642–1649. https://doi.org/10.1016/j.foodchem.2016.10.124
- Wafula EN, Brinks E, Becker B, Huch M, Trierweiler B, Mathara JM, Oguntoyinbo FA, Cho GS, Franz CMAP. Draft genome sequence of Lactobacillus fermentum BFE 6620, a potential starter culture for African vegetable foods, isolated from fermented cassava. Genome Announc. 2017 Aug 17;5(33):e00801-17. https://doi.org/10.1128/genomeA.00801-17
- Wang A, Yu H, Gao X, Li X, Qiao S. Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets. Antonie van Leeuwenhoek. 2009 Jun;96(1):89–98. https://doi.org/10.1007/s10482-009-9339-2
- Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W. Antioxidant properties of probiotic bacteria. Nutrients. 2017 May 19;9(5):521. https://doi.org/10.3390/nu9050521
- Wu KC, Cui JY, Liu J, Lu H, Zhong X, Klaassen CD. RNA-Seq provides new insights on the relative mRNA abundance of antioxidant components during mouse liver development. Free Radic Biol Med. 2019 Apr;134:335–342. https://doi.org/10.1016/j.freeradbiomed.2019.01.017
- Wu R, Wang L, Wang J, Li H, Menghe B, Wu J, Guo M, Zhang H. Isolation and preliminary probiotic selection of lactobacilli from koumiss in Inner Mongolia. J Basic Microbiol. 2009 Jun;49(3): 318–326. https://doi.org/10.1002/jobm.200800047
- Wu Y, Tang L, Chen B. Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid Med Cell Longev. 2014;2014:1–12. https://doi.org/10.1155/2014/752387
- Yu Y, Bai F, Liu Y, Yang Y, Yuan Q, Zou D, Qu S, Tian G, Song L, Zhang T, et al. Fibroblast growth factor (FGF21) protects mouse liver against d-galactose-induced oxidative stress and apoptosis via activating Nrf2 and PI3K/Akt pathways. Mol Cell Biochem. 2015 May; 403(1–2):287–299. https://doi.org/10.1007/s11010-015-2358-6
- Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Li S. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol. 2013 Mar;54:270–275. https://doi.org/10.1016/j.ijbiomac.2012.12.037
- Zhao J, Tian F, Yan S, Zhai Q, Zhang H, Chen W. Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in D-galactose-induced oxidative stress model. Food Funct. 2018 Feb 21;9(2):917-924. https://doi.org/10.1039/c7fo0174g
- Zhao Y, Hong K, Zhao J, Zhang H, Zhai Q, Chen W. Lactobacillus fermentum and its potential immunomodulatory properties. J Funct Foods. 2019 May;56:21–32. https://doi.org/10.1016/j.jff.2019.02.044