Have a personal or library account? Click to login
Dynamic External Force Feedback Loop Control of a Robot Manipulator Using a Neural Compensator—Application to the Trajectory Following in an Unknown Environment Cover

Dynamic External Force Feedback Loop Control of a Robot Manipulator Using a Neural Compensator—Application to the Trajectory Following in an Unknown Environment

Open Access
|Apr 2009

Abstract

Force/position control strategies provide an effective framework to deal with tasks involving interaction with the environment. One of these strategies proposed in the literature is external force feedback loop control. It fully employs the available sensor measurements by operating the control action in a full dimensional space without using selection matrices. The performance of this control strategy is affected by uncertainties in both the robot dynamic model and environment stiffness. The purpose of this paper is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. We show that this control strategy is robust with respect to payload uncertainties, position and environment stiffness, and dry and viscous friction. Simulation results for a three degrees-of-freedom manipulator and various types of environments and trajectories show the effectiveness of the suggested approach compared with classical external force feedback loop structures.

DOI: https://doi.org/10.2478/v10006-009-0011-9 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 113 - 126
Published on: Apr 2, 2009
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Farid Ferguene, Redouane Toumi, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 1 (March 2009)