Have a personal or library account? Click to login

Optimization of Yeast Cultivation Factors for Improved SCP Production

Open Access
|Oct 2022

References

  1. [1] Sharif M., Zafar M. H., Aqib A. I., Saeed M., Farag M. R., Alagawany M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 2021:531. https://doi.org/10.1016/j.aquaculture.2020.73588510.1016/j.aquaculture.2020.735885
  2. [2] Hua K., Cobcroft J. M., Cole A., Condon K., Jerry D. R., Mangott A., Praeger C., Vucko M. J., Zeng C., Zenger K., Strugnell J. M. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019:1:316–329. https://doi.org/10.1016/j.oneear.2019.10.01810.1016/j.oneear.2019.10.018
  3. [3] Li X., Zheng S., Wu G. Nutrition and functions of amino acids in fish. Amino acids in Nutrition and Health. Springer, 2021:133–168. https://doi.org/10.1007/978-3-030-54462-1_810.1007/978-3-030-54462-1_833770406
  4. [4] Agboola J. O., Øverland M., Skrede A., Hansen J. Ø. Yeast as major protein-rich ingredient in aquafeeds: a review of the implications for aquaculture production. Reviews in Aquaculture 2021:13(2):949–970. https://doi.org/10.1111/raq.1250710.1111/raq.12507
  5. [5] Ahmed M., Liang H., Chisomo Kasiya H., Ji K., Ge X., Ren M., Liu B., Zhu X., Sun A. Complete replacement of fish meal by plant protein ingredients with dietary essential amino acids supplementation for juvenile blunt snout bream (Megalobrama amblycephala). Aquaculture Nutrition 2019:25(1):205–214. https://doi.org/10.1111/anu.1284410.1111/anu.12844
  6. [6] Matassa S., Boon N., Pikaar I., Verstraete W. Microbial protein: future sustainable food supply route with low environmental footprint. Microbial Biotechnology 2016:9(5):568–575. https://doi.org/10.1111/1751-7915.1236910.1111/1751-7915.12369499317427389856
  7. [7] Vethathirri R. S., Santillan E., Wuertz S. Microbial community-based protein production from wastewater for animal feed applications. Bioresource Technology 2021:341. https://doi.org/10.1016/j.biortech.2021.12572310.1016/j.biortech.2021.12572334411939
  8. [8] Jones S. W., Karpol A., Friedman S., Maru B. T., Tracy B. P. Recent advances in single cell protein use as a feed ingredient in aquaculture. Current Opinion in Biotechnology 2020:61:189–197. https://doi.org/10.1016/j.copbio.2019.12.02610.1016/j.copbio.2019.12.02631991311
  9. [9] Carranza-Méndez R. C., Chávez-González M. L., Sepúlveda-Torre L., Aguilar C. N., Govea-Salas M., Ramos- González R. Production of single cell protein from orange peel residues by Candida utilis. Biocatalysis and Agricultural Biotechnology 2022:40:1–9. https://doi.org/10.1016/j.bcab.2022.10229810.1016/j.bcab.2022.102298
  10. [10] Ritala A., Häkkinen S. T., Toivari M., Wiebe M. G. Single cell protein-state-of-the-art, industrial landscape and patents 2001–2016. Frontiers in Microbiology 2017:8. https://doi.org/10.3389/fmicb.2017.0200910.3389/fmicb.2017.02009564552229081772
  11. [11] Thiviya P., Gamage A., Kapilan R., Merah O., Madhujith T. Single Cell Protein Production Using Different Fruit Waste : A Review. 2022:9(7):178. https://doi.org/10.3390/separations907017810.3390/separations9070178
  12. [12] Glencross B. D., Huyben D., Schrama J. W. The application of single-cell ingredients in aquaculture feeds–a review. Fishes 2020:5(3):1–39. https://doi.org/10.3390/fishes503002210.3390/fishes5030022
  13. [13] Patsios S. I., Dedousi A., Sossidou E. N., Zdragas A. Sustainable animal feed protein through the cultivation of YARROWIA lipolytica on agro-industrial wastes and by-products. Sustainability (Switzerland) 2020:12(4). https://doi.org/10.3390/su1204139810.3390/su12041398
  14. [14] Margareth O., Anders S. Yeast derived from lignocellulosic biomass as a sustainable feed resorce for use in aquaculture. Journal of the Science of Food and Agriculture. 2016:97(3):733–742. https://doi.org/10.1002/jsfa.800710.1002/jsfa.800727558451
  15. [15] Jach M. E., Baj T., Juda M., Świder R., Mickowska B., Malm A. Statistical evaluation of growth parameters in biofuel waste as a culture medium for improved production of single cell protein and amino acids by Yarrowia lipolytica. AMB Express 2020:10:35. https://doi.org/10.1186/s13568-020-00968-x10.1186/s13568-020-00968-x702888232072349
  16. [16] Reihani S. F. S., Khosravi-Darani K. Influencing factors on single-cell protein production by submerged fermentation: A review. Electronic Journal of Biotechnology 2019:37:34–40. https://doi.org/10.1016/j.ejbt.2018.11.00510.1016/j.ejbt.2018.11.005
  17. [17] Dhanasekaran D., Lawanya S., Saha S. Production of Single Cell Protein From Pineapple Waste. 2011:8:26–32.
  18. [18] Siddique S., Shakir H. A., Qazi J. I., Tabinda A. B., Irfan M. Screening of some agri-wastes for economical cultivation of Candida tropicalis SS1. Punjab University Journal of Zoology. 2016:31:31–37.
  19. [19] Gao Y., Li D., Liu Y. Production of single cell protein from soy molasses using Candida tropicalis. Annals of Microbiology 2012:62:1165–1172. https://doi.org/10.1007/s13213-011-0356-910.1007/s13213-011-0356-9
  20. [20] Yadav J. S. S., Yan S., Pilli S., Kumar L., Tyagi R. D., Surampalli R. Y. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances 2015:33(6):756–774. https://doi.org/10.1016/j.biotechadv.2015.07.00210.1016/j.biotechadv.2015.07.00226165970
  21. [21] Myint K. T., Otsuka M., Okubo A., Mitsuhashi R., Oguro A., Maeda H., Shigeno T., Sato K., Nakajima-Kambe T. Isolation and identification of flower yeasts for the development of mixed culture to produce single-cell protein from waste milk. Bioresource Technology Reports 2020:10:100401. https://doi.org/10.1016/j.biteb.2020.10040110.1016/j.biteb.2020.100401
  22. [22] Arous F., Azabou S., Jaouani A., Zouari-Mechichi H., Nasri M., Mechichi T. Biosynthesis of single-cell biomass from olive mill wastewater by newly isolated yeasts. Environmental Science and Pollution Research 2016:23:6783–6792. https://doi.org/10.1007/s11356-015-5924-210.1007/s11356-015-5924-226662789
  23. [23] Patelski P., Berłowska J., Balcerek M., Dziekońska-Kubczak U., Pielech-Przybylska K., Dygas D., Jedrasik J. Conversion of potato industrywaste into fodder yeast biomass. Processes 2020:8(4):1–8. https://doi.org/10.3390/pr804045310.3390/pr8040453
  24. [24] Michalik B., Biel W., Lubowicki R., Jacyno E. Chemical composition and biological value of proteins of the yeast Yarrowia lipolytica growing on industrial glycerol. Canadian Journal of Animal Science 2014:94:99–104. https://doi.org/10.4141/cjas2013-05210.4141/cjas2013-052
  25. [25] Bratosin B. C., Darjan S., Vodnar D. C. Single cell protein: A potential substitute in human and animal nutrition. Sustainability (Switzerland) 2021:13(16):1–24. https://doi.org/10.3390/su1316928410.3390/su13169284
  26. [26] Anupama, Ravindra P. Value-added food: Single cell protein. Biotechnology Advances 2000:18(6):459–479. https://doi.org/10.1016/S0734-9750(00)00045-810.1016/S0734-9750(00)00045-8
  27. [27] Bertolo A. P., Biz A. P., Kempka A. P., Rigo E., Cavalheiro D. Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility. Journal of Food Science and Technology 2019:56:3697–3706. https://doi.org/10.1007/s13197-019-03833-310.1007/s13197-019-03833-3667585931413397
  28. [28] Lapeña D., Olsen P. M., Arntzen M., Kosa G., Passoth V., Eijsink V. G. H., Horn S. J. Spruce sugars and poultry hydrolysate as growth medium in repeated fed-batch fermentation processes for production of yeast biomass. Bioprocess and Biosystems Engineering 2020:43:723–736. https://doi.org/10.1007/s00449-019-02271-x10.1007/s00449-019-02271-x706445331883034
  29. [29] Bonan C. I. D. G., Tramontina R., dos Santos M. W., Biazi L. E., Soares L. B., Pereira I. O., Hoffmam Z. B., Coutouné N., Squina F. M., Robl D., Ienczak J. L. Biorefinery Platform for Spathaspora passalidarum NRRL Y-27907 in the Production of Ethanol, Xylitol, and Single Cell Protein from Sugarcane Bagasse. Bioenergy Research 2021:15:1169–1181. https://doi.org/10.1007/s12155-021-10255-710.1007/s12155-021-10255-7
  30. [30] Zheng S., Yang M., Yang Z. Biomass production of yeast isolate from salad oil manufacturing wastewater. Bioresource Technology 2005:96(10):1183–1187. https://doi.org/10.1016/j.biortech.2004.09.02210.1016/j.biortech.2004.09.02215683910
  31. [31] Nicolas O., Aly S., Marius K. S., François T., Cheikna Z., Alfred S. T. Effect of mineral salts and nitrogen source on yeast (Candida utilis NOY1) biomass production using tubers wastes. African Journal of Biotechnology 2017:16(8):359–365. https://doi.org/10.5897/AJB2016.1580110.5897/AJB2016.15801
  32. [32] Umesh M., Priyanka K., Thazeem B., Preethi K. Production of Single Cell Protein and Polyhydroxyalkanoate from Carica papaya Waste. Arabian Journal for Science and Engineering 2017:42:2361–2369. https://doi.org/10.1007/s13369-017-2519-x10.1007/s13369-017-2519-x
  33. [33] Schultz N., Chang L., Hauck A., Reuss M., Syldatk C. Microbial production of single-cell protein from deproteinized whey concentrates. Applied Microbiology and Biotechnology 2006:69:515–520. https://doi.org/10.1007/s00253-005-0012-z10.1007/s00253-005-0012-z16133331
  34. [34] Patelski P., Berlowska J., Dziugan P., Pielech-Przybylska K., Balcerek M., Dziekonska U., Kalinowska H. Utilisation of sugar beet bagasse for the biosynthesis of yeast SCP. Journal of Food Engineering 2015:167:32–37. https://doi.org/10.1016/j.jfoodeng.2015.03.03110.1016/j.jfoodeng.2015.03.031
  35. [35] Gao Z., Wang X., Tan C., Zhou H., Mai K., He G. Effect of dietary methionine levels on growth performance, amino acid metabolism and intestinal homeostasis in turbot (Scophthalmus maximus L.). Aquaculture 2018:498:335–342. https://doi.org/10.1016/j.aquaculture.2018.08.05310.1016/j.aquaculture.2018.08.053
  36. [36] Gorissen S. H. M., Crombag J. J. R., Senden J. M. G., Waterval W. A. H., Bierau J., Verdijk L. B., van Loon L. J. C. Protein content and amino acid composition of commercially available plant–based protein isolates. Amino Acids 2018:50:1685–1695. https://doi.org/10.1007/s00726-018-2640-510.1007/s00726-018-2640-5624511830167963
  37. [37] Jach M. E., Serefko A., Ziaja M., Kieliszek M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022:12. https://doi.org/10.3390/metabo1201006310.3390/metabo12010063878059735050185
  38. [38] Matos Â. P. The Impact of Microalgae in Food Science and Technology. JAOCS, Journal of the American Oil Chemists’ Society 2017:94(11):1333–1350. https://doi.org/10.1007/s11746-017-3050-710.1007/s11746-017-3050-7
  39. [39] Nasseri A. T., Rasoul-Amini S., Morowvat M. H., Ghasemi Y. Single cell protein: Production and process. American Journal of Food Technology 2011:6(2):103–116. https://doi.org/10.3923/ajft.2011.103.11610.3923/ajft.2011.103.116
  40. [40] Hansen J. Ø., Lagos L., Lei P., Reveco-Urzua F. E., Morales-Lange B., Hansen L. D., Schiavone M., Mydland L. T., Arntzen M. Ø., Mercado L., Benicio R. T., Øverland M. Down-stream processing of baker’s yeast (Saccharomyces cerevisiae) – Effect on nutrient digestibility and immune response in Atlantic salmon (Salmo salar). Aquaculture 2021:530:735707. https://doi.org/10.1016/j.aquaculture.2020.73570710.1016/j.aquaculture.2020.735707
  41. [41] Somda M. K., Ouattara C. A. T., Mogmenga I., Nikiema M., Keita I., Ouedraogo N., Traore D., Traore A. S. Optimization of Saccharomyces cerevisiae SKM10 single cell protein production from mango (Magnifera indica L.) waste using response surface methodology. African Journal of Biotechnology 2017:16(45):2127–2133. https://doi.org/10.5897/AJB2017.1621010.5897/AJB2017.16210
  42. [42] Kot A. M., Błażejak S., Kurcz A., Bryś J., Gientka I., Bzducha-Wróbel A., Maliszewska M., Reczek L. Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electronic Journal of Biotechnology 2017:27:25–31. https://doi.org/10.1016/j.ejbt.2017.01.00710.1016/j.ejbt.2017.01.007
  43. [43] Hezarjaribi M., Ardestani F., Ghorbani H. R. Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess. Applied Biochemistry and Biotechnology 2016:179:1336–1345. https://doi.org/10.1007/s12010-016-2069-910.1007/s12010-016-2069-927090426
  44. [44] Jalasutram V., Kataram S., Gandu B., Anupoju G. R. Single cell protein production from digested and undigested poultry litter by Candida utilis: Optimization of process parameters using response surface methodology. Clean Technologies and Environmental Policy 2013:15:265–273. https://doi.org/10.1007/s10098-012-0504-310.1007/s10098-012-0504-3
  45. [45] Liu N., Santala S., Stephanopoulos G. Mixed carbon substrates: a necessary nuisance or a missed opportunity? Current Opinion in Biotechnology 2020:62:15–21. https://doi.org/10.1016/j.copbio.2019.07.00310.1016/j.copbio.2019.07.00331513988
  46. [46] Rages A. A., Haider M. M., Aydin M. Alkaline hydrolysis of olive fruits wastes for the production of single cell protein by Candida lipolytica. Biocatalysis and Agricultural Biotechnology 2021:33:101999. https://doi.org/10.1016/j.bcab.2021.10199910.1016/j.bcab.2021.101999
  47. [47] Amata I. A. Yeast a single cell protein: characteristocs and metabolism. International Journal of Applied Biology and Pharmaceutical Technology 2013:4:158–170.
  48. [48] Kieliszek M., Błażejak S., Bzducha-Wróbel A., Kot A. M. Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells. Biological Trace Element Research 2019:187:316–327. https://doi.org/10.1007/s12011-018-1342-x10.1007/s12011-018-1342-x631505529675568
  49. [49] Baghban R., Farajnia S., Rajabibazl M., Ghasemi Y., Mafi A. A., Hoseinpoor R., Rahbarnia L., Aria M. Yeast Expression Systems: Overview and Recent Advances. Molecular Biotechnology 2019:61:365–384. https://doi.org/10.1007/s12033-019-00164-810.1007/s12033-019-00164-830805909
  50. [50] Hu Z., He B., Ma L., Sun Y., Niu Y., Zeng B. Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae. Indian Journal of Microbiology 2017:57:270–277. https://doi.org/10.1007/s12088-017-0657-110.1007/s12088-017-0657-1557477528904410
  51. [51] Huezo L., Shah A., Michel F. C. Effects of ultrasound on fermentation of glucose to ethanol by Saccharomyces cerevisiae. Fermentation 2019:5(1):5010016. https://doi.org/10.3390/fermentation501001610.3390/fermentation5010016
  52. [52] Karim A., Gerliani N., Aïder M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. International Journal of Food Microbiology 2020:333:1–24. https://doi.org/10.1016/j.ijfoodmicro.2020.10881810.1016/j.ijfoodmicro.2020.10881832805574
  53. [53] Tang W., Wang Y., Zhang J., Cai Y., He Z. Biosynthetic pathway of carotenoids in rhodotorula and strategies for enhanced their production. Journal of Microbiology and Biotechnology 2019:29:507–517. https://doi.org/10.4014/jmb.1801.0102210.4014/jmb.1801.0102230856706
  54. [54] Rubio-Ribeaux D., da Silva Andrare R. F. da Silva G. S., de Holanda R. A., Pele M. A., Nunes P., Vilar J. J. C., de Resende.-Stoianoff M. A., Campos_Takaki G. M. Promising biosurfactant produced by a new Candida tropicalis UCP 1613 strain using substrates from renewable-resources. African Journal of Microbiology Research 2017:11:981–991. https://doi.org/10.5897/AJMR2017.848610.5897/AJMR2017.8486
  55. [55] Da Silva I. A., Bezerra K. G. O., Durval I. J. B., Farias C. B. B., Da Silva C. J. G., Da Silva Santos E. M., De Luna J. M., Sarubbo L. A. Evaluation of the emulsifying and antioxidant capacity of the biosurfactant produced by candida bombicola URM 3718. Chemical Engineering Transactions 2020:79:67–72.
  56. [56] Monteiro R. R. C., Virgen-Ortiz J. J., Berenguer-Murcia Á., da Rocha T. N., dos Santos J. C. S., Alcántara A. R., Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catalysis Today 2021:362:141–154. https://doi.org/10.1016/j.cattod.2020.03.02610.1016/j.cattod.2020.03.026
  57. [57] Ohlsson J. A., Olstorpe M., Passoth V., Leong S. L. Yeast single cell protein production from a biogas co-digestion substrate. bioRxiv 2019:1–27. https://doi.org/10.1101/76634510.1101/766345
  58. [58] Akanni G. B., du Preez J. C., Steyn L., Kilian S. G. Protein enrichment of an Opuntia ficus-indica cladode hydrolysate by cultivation of Candida utilis and Kluyveromyces marxianus. Journal of the Science of Food and Agriculture 2015:95(5):1094–1102. https://doi.org/10.1002/jsfa.698510.1002/jsfa.6985440200725371280
  59. [59] Magalhães C. E. B., Souza-Neto M. S., Astolfi-Filho S., Matos I. T. S. R. Candida tropicalis able to produce yeast single cell protein using sugarcane bagasse hemicellulosic hydrolysate as carbon source. Biotechnology Research and Innovation 2018:2(1):19–21. https://doi.org/10.1016/j.biori.2018.08.00210.1016/j.biori.2018.08.002
  60. [60] Kurcz A., Błażejak S., Kot A. M., Bzducha-Wróbel A., Kieliszek M. Application of Industrial Wastes for the Production of Microbial Single-Cell Protein by Fodder Yeast Candida utilis. Waste and Biomass Valorization 2018:9:57–64. https://doi.org/10.1007/s12649-016-9782-z10.1007/s12649-016-9782-z
  61. [61] Bekatorou A., Psarianos C., Koutinas A. A. Production of food grade yeasts. Food Technology and Biotechnology. 2006:44:407–415.
  62. [62] Padkina M. V., Sambuk E. V. Prospects for the Application of Yeast Display in Biotechnology and Cell Biology (Review). Applied Biochemistry and Microbiology 2018:54:337–351. https://doi.org/10.1134/S000368381804010510.1134/S0003683818040105
  63. [63] Bettencourt S., Miranda C., Pozdniakova T. A., Sampaio P., Franco-Duarte R., Pais C. Single cell oil production by oleaginous yeasts grown in synthetic and waste-derived volatile fatty acids. Microorganisms 2020:8:(11):8111809. https://doi.org/10.3390/microorganisms811180910.3390/microorganisms8111809769856833213005
  64. [64] Spalvins K., Geiba Z., Kusnere Z., Blumberga D. Waste Cooking Oil as Substrate for Single Cell Protein Production by Yeast Yarrowia lipolytica. Environmental and Climate Technologies 2020:24(3):457–469. https://doi.org/10.2478/rtuect-2020-011610.2478/rtuect-2020-0116
  65. [65] Tian Y., Zhang Y., Sun Z., Li J., Liu D. Yeast Compound for Single-cell Protein Production by Potato Starch Processing Wastewater Fermentation. DEStech Transactions on Environment, Energy and Earth Sciences 2017:98–104. https://doi.org/10.12783/dteees/ese2017/1433210.12783/dteees/ese2017/14332
  66. [66] Broach J. R. Nutritional control of growth and development in yeast. Genetics 2012:192(1):73–105. https://doi.org/10.1534/genetics.111.13573110.1534/genetics.111.135731343054722964838
  67. [67] Wu J., Hu J., Zhao S., He M., Hu G., Ge X., Peng N. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose. Applied Biochemistry and Biotechnology 2018:185:163–178. https://doi.org/10.1007/s12010-017-2644-810.1007/s12010-017-2644-8593788829098561
  68. [68] Rajoka M. I., Kiani M. A. T., Khan S., Awan M. S., Hashmi A. S. Production of single cell protein from rice polishings using Candida utilis. World Journal of Microbiology and Biotechnology 2004:20:297–301. https://doi.org/10.1023/B:WIBI.0000023845.96123.dd10.1023/B:WIBI.0000023845.96123.dd
  69. [69] El Bialy H., Gomaa O. M., Azab K. S. Conversion of oil waste to valuable fatty acids using Oleaginous yeast. World Journal of Microbiology and Biotechnology 2011:27:2791–2798. https://doi.org/10.1007/s11274-011-0755-x10.1007/s11274-011-0755-x
  70. [70] Dourou M., Aggeli D., Papanikolaou S., Aggelis G. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Applied Microbiology and Biotechnology 2018:102:2509–2523. https://doi.org/10.1007/s00253-018-8813-z10.1007/s00253-018-8813-z29423634
  71. [71] Daskalaki A., Perdikouli N., Aggeli D., Aggelis G. Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica. Applied Microbiology and Biotechnology 2019:103:8585–8596. https://doi.org/10.1007/s00253-019-10088-710.1007/s00253-019-10088-731511932
  72. [72] Dourou M., Mizerakis P., Papanikolaou S., Aggelis G. Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Applied Microbiology and Biotechnology 2017:101:7213–7226. https://doi.org/10.1007/s00253-017-8455-610.1007/s00253-017-8455-628801795
  73. [73] Rajendran S., Kapilan R., Vasantharuba S. Single Cell Protein Production from Papaw and Banana Fruit Juices Using Baker’s Yeast. American-Euroasian J. Agric. & Environ. Sci. 2018:18:168–172.
  74. [74] Kot A. M., Błażejak S., Kurcz A., Bryś J., Gientka I., Bzducha-Wróbel A., Maliszewska M., Reczek L. Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electronic Journal of Biotechnology 2017:27:25–31. https://doi.org/10.1016/j.ejbt.2017.01.00710.1016/j.ejbt.2017.01.007
  75. [75] Zakhartsev M., Reuss M. Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature. FEMS Yeast Research 2018:18(6):foy052. https://doi.org/10.1093/femsyr/foy05210.1093/femsyr/foy05229718340
  76. [76] Huyben D., Nyman A., Vidaković A., Passoth V., Moccia R., Kiessling A., Dicksved J., Lundh T. Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout. Aquaculture 2017:473:528–537. https://doi.org/10.1016/j.aquaculture.2017.03.02410.1016/j.aquaculture.2017.03.024
  77. [77] Kasozi N., Iwe G., Sadik K., Asizua D., Namulawa V. T. Dietary amino acid requirements of pebbly fish, Alestes baremoze (Joannis, 1835) based on whole body amino acid composition. Aquaculture Reports 2019:14:100197 https://doi.org/10.1016/j.aqrep.2019.10019710.1016/j.aqrep.2019.100197
  78. [78] Miller E. L. Food and Agriculture Organisation of the United Nations, Rome, 2004. [Online]. [Accessed: 15 March 2022]. Available: https://www.fao.org/3/y5019e/y5019e06.htm#bm06
  79. [79] Delamare–Deboutteville J., Batstone D. J., Kawasaki M., Stegman S., Salini M., Tabrett S., Smullen R., Barnes A. C., Hülsen T. Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. Water Research X 2019:4:100031. https://doi.org/10.1016/j.wroa.2019.10003110.1016/j.wroa.2019.100031661459931334494
  80. [80] Donadelli R. A., Aldrich C. G., Jones C. K., Beyer R. S. The amino acid composition and protein quality of various egg, poultry meal by-products, and vegetable proteins used in the production of dog and cat diets. Poultry Science 2019:98(3):1371–1378. https://doi.org/10.3382/ps/pey46210.3382/ps/pey462637743530351365
  81. [81] Overland M., Karlsson A., Mydland L. T., Romarheim O. H., Skrede A. Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture 2013:402–403:1–7. https://doi.org/10.1016/j.aquaculture.2013.03.01610.1016/j.aquaculture.2013.03.016
DOI: https://doi.org/10.2478/rtuect-2022-0064 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 848 - 861
Published on: Oct 11, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Svetlana Raita, Zane Kusnere, Kriss Spalvins, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.