[2] Hua K., Cobcroft J. M., Cole A., Condon K., Jerry D. R., Mangott A., Praeger C., Vucko M. J., Zeng C., Zenger K., Strugnell J. M. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019:1:316–329. https://doi.org/10.1016/j.oneear.2019.10.01810.1016/j.oneear.2019.10.018
[4] Agboola J. O., Øverland M., Skrede A., Hansen J. Ø. Yeast as major protein-rich ingredient in aquafeeds: a review of the implications for aquaculture production. Reviews in Aquaculture 2021:13(2):949–970. https://doi.org/10.1111/raq.1250710.1111/raq.12507
[5] Ahmed M., Liang H., Chisomo Kasiya H., Ji K., Ge X., Ren M., Liu B., Zhu X., Sun A. Complete replacement of fish meal by plant protein ingredients with dietary essential amino acids supplementation for juvenile blunt snout bream (Megalobrama amblycephala). Aquaculture Nutrition 2019:25(1):205–214. https://doi.org/10.1111/anu.1284410.1111/anu.12844
[9] Carranza-Méndez R. C., Chávez-González M. L., Sepúlveda-Torre L., Aguilar C. N., Govea-Salas M., Ramos- González R. Production of single cell protein from orange peel residues by Candida utilis. Biocatalysis and Agricultural Biotechnology 2022:40:1–9. https://doi.org/10.1016/j.bcab.2022.10229810.1016/j.bcab.2022.102298
[13] Patsios S. I., Dedousi A., Sossidou E. N., Zdragas A. Sustainable animal feed protein through the cultivation of YARROWIA lipolytica on agro-industrial wastes and by-products. Sustainability (Switzerland) 2020:12(4). https://doi.org/10.3390/su1204139810.3390/su12041398
[14] Margareth O., Anders S. Yeast derived from lignocellulosic biomass as a sustainable feed resorce for use in aquaculture. Journal of the Science of Food and Agriculture. 2016:97(3):733–742. https://doi.org/10.1002/jsfa.800710.1002/jsfa.800727558451
[15] Jach M. E., Baj T., Juda M., Świder R., Mickowska B., Malm A. Statistical evaluation of growth parameters in biofuel waste as a culture medium for improved production of single cell protein and amino acids by Yarrowia lipolytica. AMB Express 2020:10:35. https://doi.org/10.1186/s13568-020-00968-x10.1186/s13568-020-00968-x702888232072349
[18] Siddique S., Shakir H. A., Qazi J. I., Tabinda A. B., Irfan M. Screening of some agri-wastes for economical cultivation of Candida tropicalis SS1. Punjab University Journal of Zoology. 2016:31:31–37.
[21] Myint K. T., Otsuka M., Okubo A., Mitsuhashi R., Oguro A., Maeda H., Shigeno T., Sato K., Nakajima-Kambe T. Isolation and identification of flower yeasts for the development of mixed culture to produce single-cell protein from waste milk. Bioresource Technology Reports 2020:10:100401. https://doi.org/10.1016/j.biteb.2020.10040110.1016/j.biteb.2020.100401
[22] Arous F., Azabou S., Jaouani A., Zouari-Mechichi H., Nasri M., Mechichi T. Biosynthesis of single-cell biomass from olive mill wastewater by newly isolated yeasts. Environmental Science and Pollution Research 2016:23:6783–6792. https://doi.org/10.1007/s11356-015-5924-210.1007/s11356-015-5924-226662789
[23] Patelski P., Berłowska J., Balcerek M., Dziekońska-Kubczak U., Pielech-Przybylska K., Dygas D., Jedrasik J. Conversion of potato industrywaste into fodder yeast biomass. Processes 2020:8(4):1–8. https://doi.org/10.3390/pr804045310.3390/pr8040453
[24] Michalik B., Biel W., Lubowicki R., Jacyno E. Chemical composition and biological value of proteins of the yeast Yarrowia lipolytica growing on industrial glycerol. Canadian Journal of Animal Science 2014:94:99–104. https://doi.org/10.4141/cjas2013-05210.4141/cjas2013-052
[25] Bratosin B. C., Darjan S., Vodnar D. C. Single cell protein: A potential substitute in human and animal nutrition. Sustainability (Switzerland) 2021:13(16):1–24. https://doi.org/10.3390/su1316928410.3390/su13169284
[27] Bertolo A. P., Biz A. P., Kempka A. P., Rigo E., Cavalheiro D. Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility. Journal of Food Science and Technology 2019:56:3697–3706. https://doi.org/10.1007/s13197-019-03833-310.1007/s13197-019-03833-3667585931413397
[28] Lapeña D., Olsen P. M., Arntzen M., Kosa G., Passoth V., Eijsink V. G. H., Horn S. J. Spruce sugars and poultry hydrolysate as growth medium in repeated fed-batch fermentation processes for production of yeast biomass. Bioprocess and Biosystems Engineering 2020:43:723–736. https://doi.org/10.1007/s00449-019-02271-x10.1007/s00449-019-02271-x706445331883034
[29] Bonan C. I. D. G., Tramontina R., dos Santos M. W., Biazi L. E., Soares L. B., Pereira I. O., Hoffmam Z. B., Coutouné N., Squina F. M., Robl D., Ienczak J. L. Biorefinery Platform for Spathaspora passalidarum NRRL Y-27907 in the Production of Ethanol, Xylitol, and Single Cell Protein from Sugarcane Bagasse. Bioenergy Research 2021:15:1169–1181. https://doi.org/10.1007/s12155-021-10255-710.1007/s12155-021-10255-7
[31] Nicolas O., Aly S., Marius K. S., François T., Cheikna Z., Alfred S. T. Effect of mineral salts and nitrogen source on yeast (Candida utilis NOY1) biomass production using tubers wastes. African Journal of Biotechnology 2017:16(8):359–365. https://doi.org/10.5897/AJB2016.1580110.5897/AJB2016.15801
[32] Umesh M., Priyanka K., Thazeem B., Preethi K. Production of Single Cell Protein and Polyhydroxyalkanoate from Carica papaya Waste. Arabian Journal for Science and Engineering 2017:42:2361–2369. https://doi.org/10.1007/s13369-017-2519-x10.1007/s13369-017-2519-x
[36] Gorissen S. H. M., Crombag J. J. R., Senden J. M. G., Waterval W. A. H., Bierau J., Verdijk L. B., van Loon L. J. C. Protein content and amino acid composition of commercially available plant–based protein isolates. Amino Acids 2018:50:1685–1695. https://doi.org/10.1007/s00726-018-2640-510.1007/s00726-018-2640-5624511830167963
[40] Hansen J. Ø., Lagos L., Lei P., Reveco-Urzua F. E., Morales-Lange B., Hansen L. D., Schiavone M., Mydland L. T., Arntzen M. Ø., Mercado L., Benicio R. T., Øverland M. Down-stream processing of baker’s yeast (Saccharomyces cerevisiae) – Effect on nutrient digestibility and immune response in Atlantic salmon (Salmo salar). Aquaculture 2021:530:735707. https://doi.org/10.1016/j.aquaculture.2020.73570710.1016/j.aquaculture.2020.735707
[41] Somda M. K., Ouattara C. A. T., Mogmenga I., Nikiema M., Keita I., Ouedraogo N., Traore D., Traore A. S. Optimization of Saccharomyces cerevisiae SKM10 single cell protein production from mango (Magnifera indica L.) waste using response surface methodology. African Journal of Biotechnology 2017:16(45):2127–2133. https://doi.org/10.5897/AJB2017.1621010.5897/AJB2017.16210
[42] Kot A. M., Błażejak S., Kurcz A., Bryś J., Gientka I., Bzducha-Wróbel A., Maliszewska M., Reczek L. Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electronic Journal of Biotechnology 2017:27:25–31. https://doi.org/10.1016/j.ejbt.2017.01.00710.1016/j.ejbt.2017.01.007
[43] Hezarjaribi M., Ardestani F., Ghorbani H. R. Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess. Applied Biochemistry and Biotechnology 2016:179:1336–1345. https://doi.org/10.1007/s12010-016-2069-910.1007/s12010-016-2069-927090426
[44] Jalasutram V., Kataram S., Gandu B., Anupoju G. R. Single cell protein production from digested and undigested poultry litter by Candida utilis: Optimization of process parameters using response surface methodology. Clean Technologies and Environmental Policy 2013:15:265–273. https://doi.org/10.1007/s10098-012-0504-310.1007/s10098-012-0504-3
[46] Rages A. A., Haider M. M., Aydin M. Alkaline hydrolysis of olive fruits wastes for the production of single cell protein by Candida lipolytica. Biocatalysis and Agricultural Biotechnology 2021:33:101999. https://doi.org/10.1016/j.bcab.2021.10199910.1016/j.bcab.2021.101999
[47] Amata I. A. Yeast a single cell protein: characteristocs and metabolism. International Journal of Applied Biology and Pharmaceutical Technology 2013:4:158–170.
[54] Rubio-Ribeaux D., da Silva Andrare R. F. da Silva G. S., de Holanda R. A., Pele M. A., Nunes P., Vilar J. J. C., de Resende.-Stoianoff M. A., Campos_Takaki G. M. Promising biosurfactant produced by a new Candida tropicalis UCP 1613 strain using substrates from renewable-resources. African Journal of Microbiology Research 2017:11:981–991. https://doi.org/10.5897/AJMR2017.848610.5897/AJMR2017.8486
[55] Da Silva I. A., Bezerra K. G. O., Durval I. J. B., Farias C. B. B., Da Silva C. J. G., Da Silva Santos E. M., De Luna J. M., Sarubbo L. A. Evaluation of the emulsifying and antioxidant capacity of the biosurfactant produced by candida bombicola URM 3718. Chemical Engineering Transactions 2020:79:67–72.
[56] Monteiro R. R. C., Virgen-Ortiz J. J., Berenguer-Murcia Á., da Rocha T. N., dos Santos J. C. S., Alcántara A. R., Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catalysis Today 2021:362:141–154. https://doi.org/10.1016/j.cattod.2020.03.02610.1016/j.cattod.2020.03.026
[57] Ohlsson J. A., Olstorpe M., Passoth V., Leong S. L. Yeast single cell protein production from a biogas co-digestion substrate. bioRxiv 2019:1–27. https://doi.org/10.1101/76634510.1101/766345
[58] Akanni G. B., du Preez J. C., Steyn L., Kilian S. G. Protein enrichment of an Opuntia ficus-indica cladode hydrolysate by cultivation of Candida utilis and Kluyveromyces marxianus. Journal of the Science of Food and Agriculture 2015:95(5):1094–1102. https://doi.org/10.1002/jsfa.698510.1002/jsfa.6985440200725371280
[59] Magalhães C. E. B., Souza-Neto M. S., Astolfi-Filho S., Matos I. T. S. R. Candida tropicalis able to produce yeast single cell protein using sugarcane bagasse hemicellulosic hydrolysate as carbon source. Biotechnology Research and Innovation 2018:2(1):19–21. https://doi.org/10.1016/j.biori.2018.08.00210.1016/j.biori.2018.08.002
[60] Kurcz A., Błażejak S., Kot A. M., Bzducha-Wróbel A., Kieliszek M. Application of Industrial Wastes for the Production of Microbial Single-Cell Protein by Fodder Yeast Candida utilis. Waste and Biomass Valorization 2018:9:57–64. https://doi.org/10.1007/s12649-016-9782-z10.1007/s12649-016-9782-z
[64] Spalvins K., Geiba Z., Kusnere Z., Blumberga D. Waste Cooking Oil as Substrate for Single Cell Protein Production by Yeast Yarrowia lipolytica. Environmental and Climate Technologies 2020:24(3):457–469. https://doi.org/10.2478/rtuect-2020-011610.2478/rtuect-2020-0116
[65] Tian Y., Zhang Y., Sun Z., Li J., Liu D. Yeast Compound for Single-cell Protein Production by Potato Starch Processing Wastewater Fermentation. DEStech Transactions on Environment, Energy and Earth Sciences 2017:98–104. https://doi.org/10.12783/dteees/ese2017/1433210.12783/dteees/ese2017/14332
[67] Wu J., Hu J., Zhao S., He M., Hu G., Ge X., Peng N. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose. Applied Biochemistry and Biotechnology 2018:185:163–178. https://doi.org/10.1007/s12010-017-2644-810.1007/s12010-017-2644-8593788829098561
[70] Dourou M., Aggeli D., Papanikolaou S., Aggelis G. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Applied Microbiology and Biotechnology 2018:102:2509–2523. https://doi.org/10.1007/s00253-018-8813-z10.1007/s00253-018-8813-z29423634
[73] Rajendran S., Kapilan R., Vasantharuba S. Single Cell Protein Production from Papaw and Banana Fruit Juices Using Baker’s Yeast. American-Euroasian J. Agric. & Environ. Sci. 2018:18:168–172.
[74] Kot A. M., Błażejak S., Kurcz A., Bryś J., Gientka I., Bzducha-Wróbel A., Maliszewska M., Reczek L. Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electronic Journal of Biotechnology 2017:27:25–31. https://doi.org/10.1016/j.ejbt.2017.01.00710.1016/j.ejbt.2017.01.007
[76] Huyben D., Nyman A., Vidaković A., Passoth V., Moccia R., Kiessling A., Dicksved J., Lundh T. Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout. Aquaculture 2017:473:528–537. https://doi.org/10.1016/j.aquaculture.2017.03.02410.1016/j.aquaculture.2017.03.024
[77] Kasozi N., Iwe G., Sadik K., Asizua D., Namulawa V. T. Dietary amino acid requirements of pebbly fish, Alestes baremoze (Joannis, 1835) based on whole body amino acid composition. Aquaculture Reports 2019:14:100197 https://doi.org/10.1016/j.aqrep.2019.10019710.1016/j.aqrep.2019.100197
[78] Miller E. L. Food and Agriculture Organisation of the United Nations, Rome, 2004. [Online]. [Accessed: 15 March 2022]. Available: https://www.fao.org/3/y5019e/y5019e06.htm#bm06
[79] Delamare–Deboutteville J., Batstone D. J., Kawasaki M., Stegman S., Salini M., Tabrett S., Smullen R., Barnes A. C., Hülsen T. Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. Water Research X 2019:4:100031. https://doi.org/10.1016/j.wroa.2019.10003110.1016/j.wroa.2019.100031661459931334494
[80] Donadelli R. A., Aldrich C. G., Jones C. K., Beyer R. S. The amino acid composition and protein quality of various egg, poultry meal by-products, and vegetable proteins used in the production of dog and cat diets. Poultry Science 2019:98(3):1371–1378. https://doi.org/10.3382/ps/pey46210.3382/ps/pey462637743530351365
[81] Overland M., Karlsson A., Mydland L. T., Romarheim O. H., Skrede A. Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture 2013:402–403:1–7. https://doi.org/10.1016/j.aquaculture.2013.03.01610.1016/j.aquaculture.2013.03.016