Have a personal or library account? Click to login
Towards Next-Generation Small-Size Boron Ion Implanting Apparatus Cover

References

  1. A compilation of outgassing data on vacuum materials (1982). Princeton University Plasma Physics Laboratory Database. https://ncsx.pppl.gov/NCSX_Engineering/Materials/VacuumMaterials/Outgassing_Data.pdf (accessed 12.03.2022).
  2. Alton, G. D. (1974). Ion Sources for Accelerators. www.osti.gov/servlets/purl/4244522-TwJ9HX/ (accessed 14.03.2022).
  3. Analog Devices. Datasheet AD9851: CMOS 180 MHz DDS/DAC Synthesizer Data Sheet (Rev. D). www.analog.com/media/en/technical-documentation/data-sheets/AD9851.pdf (accessed 14.03.2022).
  4. Atalla, M., Tannenbaum, E., Scheibner, E. J. (1959). Stabilization of silicon surfaces by thermally grown oxides. Bell Syst. Techn. J., 38 (3), 749–783. doi:10.1002/j, 1538-7305.10.1002/j.1538-7305.1959.tb03907.x
  5. Brotherton, R. J., Steinberg, H. (2016). Progress in Boron Chemistry: Volume 2. Elsevier Science & Technology, Kent. 310 pp.
  6. Bugaev, A. S., Vizir, A. V., Gushenets, V. I., Nikolaev, A. G., Oks, E. M., Savkin, K. P., Yushkov, Yu. G., Tyunkov, A. V. (2019). Generation of boron ions for beam and plasma technologies. Russ. Phys. J., 62 (7), DOI: 10.1007/s11182-019-01825-6.10.1007/s11182-019-01825-6
  7. Chiggiato, P. (2017). Materials and Properties IV, Outgassing. https://indico.cern.ch/event/565314/contributions/2285743/attachments/1466415/2277367/Outgassing-CAS-Lund-final.pdf (accessed 13.08.2020).
  8. Chivers, D. J. (1992). Freeman ion source: An overview (invited). Rev. Sci. Instrum., 63 (4), 2501–2506. https://doi.org/10.1063/1.1142874 (accessed 12.03.2022).10.1063/1.1142874
  9. Christensen, S. M. (2012). Modeling and measuring the characteristics of an inductivly coupled plasma antenna for micro-propulsion system. Master’s Thesis, Boise State University. 92 pp. https://scholarworks.boisestate.edu/cgi/viewcontent.cgi?article=1345&context=td (accessed 12.03.2022).
  10. Current, M. I., Rubin, L., Sinclair, F. (2018). Commercial ion implantation systems (Chapter 3). In: Ion Implantation Science and Technology. Ion Implant Technology Co, p. 44.
  11. Darlington, S. (1952). Semiconductor signal translation device. US Patent 1952-05-09 as US286914A, at 1953-12-22 refreshed asUS2663806A. Filed by Bell Telephone Laboratories Inc 1952-05-09.
  12. Encyclopedia of Spectroscopy and Spectrometry (3rd edn.) (2016). Academic Press. 3584 pp.
  13. Evans, E. H. Encyclopedia of Analytical Science (2nd edn.) (2005). Elsevier. 5000 pp.
  14. Fair, R. B. (1998). History of some early developments in ion-implantation technology leading to silicon transistor manufacturing. Proc. IEEE, 86 (1), 111–137.10.1109/5.658764
  15. Fourches, N., Zielińska, M., Charles, G. (2019). High purity germanium: From gamma-ray detection to dark matter subterranean detectors. In: Almayahi, B. (Ed.). Use of Gamma Radiation Techniques in Peaceful Applications. http://dx.doi.org/10.5772/intechopen.82864.10.5772/intechopen.82864
  16. Freeman, J. H. (1963). A new ion source for electromagnetic isotope separators. Nucl. Instrum. Meth., 22, 306–316.10.1016/0029-554X(63)90257-X
  17. Frolova, V. P., Gushenets, V. I., Yushkov, G., Frolova, V. P., Shandrikov, M. V., Tyunkov, A., Savkin, K. P., Yushkov, Y., Nikolaev, A. G., Oks, E. M, Gushenets, V., Bugaev, A. S., Vizir, A. V. (2017). Generation of boron ions for beam and plasma technologies. IEEE Trans. Plasma Sci., 45, 2070–2074.10.1109/TPS.2017.2656154
  18. Gentile, K., Cushing, R. (1999). Technical Tutorial on Digital Signal Synthesis. www.analog.com/en/education/education-library/technical-tutorial-dds.html (accessed 13.03.2022).
  19. Gibbons, J. F. (1968). Ion implantation in semiconductors—Part I: Range distribution theory and experiments. Proc. IEEE, 56 (3), 295–319.10.1109/PROC.1968.6273
  20. Gibbons, J. F. (1972). Ion implantation in semiconductors—Part II: Damage production and annealing. Proc. IEEE, 60 (9), 1062–1096.10.1109/PROC.1972.8854
  21. Gibbons, J. F. (1987). Historical perspectives on ion implantation. Nucl. Instrum. Meth., B21, 83–89.10.1016/0168-583X(87)90803-2
  22. Gott, R. P. (2017). The development and analysis of a heaterless, insertless, microplasma-based hollow cathode. MSc Thesis. Department of Mechanical and Aerospace Engineering, University of Alabama, Huntsville. 73 pp. www.uah.edu/images/administrative/perl/papers/thesis/2018_gott_ms_thesis_final.pdf (accessed 20.04.2022).
  23. Greiner, E. S., Gutowski, J. A. (1957). Electrical resistivity of boron. J. Appl. Phys., 28, 1364. DOI:10.1109/TPS.2011.216763410.1109/TPS.2011.2167634
  24. Greenfield, S., Durrani, T. M., Tyson, J., Watson, C. A. (1990). A comparison of boosted-discharge hollow cathode lamps and an inductively coupled plasma (ICP) as excitation sources in ICP atomic fluorescence spectrometry. Spectrochim. Acta B Atom. Spectrosc., 45 (3), 341–349.10.1016/0584-8547(90)80109-V
  25. Gundersen, M. A., Schaefer, G., Schoenbach, K. H. (1990). Basic mechanisms contributing to the hollow cathode effect. In: Physics and Applications of Pseudosparks. NATO ASI Series (Series B: Physics), Vol. 219. Springer, Boston, pp. 55–76.10.1007/978-1-4615-3786-1_3
  26. Gushenets, V. I., Oks, E. M., Bugaev, A. S. (2018). Generation of boron ions for beam and plasma technologies. Proceedings of the 28th International Symposium on Discharges and Electrical Insulation in Vacuum. Greifswald, pp. 411–414.
  27. Gushenets, V., Bugaev, A., Oks, E. (2019). Boron vacuum-arc ion source with LaB6cathode. Rev. Sci. Instrum., 90, 113309. DOI: 10.1063/1.5127096.10.1063/1.512709631779375
  28. Hanley, P. R. (1983). Physical limitations of ion implantation equipment. In: Ryssel, H. et al. (eds.). Ion Implantation: Equipment and Techniques. Springer-Verlag, Berlin/Heidelberg, pp. 2–24.10.1007/978-3-642-69156-0_1
  29. Harwick, J. (Radio Corporation of America) (1953). Semiconductor phase shift oscillator and device. US Patent No. 2,816,228. Filed 21 May 1953. Serial No. 356,407.
  30. Hoerni, A. (1962). Method of manufacturing semiconductor devices. U.S. Patent 3 202 589, Mar. 20.
  31. Hyo-Chang, L. (2018). Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics. Appl. Phys. Rev., 5, 011108. https://doi.org/10.1063/1.501200110.1063/1.5012001
  32. Ishikawa, D., Hasegawa, S. (2019). Development of removable hollow cathode discharge apparatus for sputtering solid metals. J. Spectrosc., 2019, 7491671. DOI: 10.1155/2019/7491671.10.1155/2019/7491671
  33. Jacobi, W. (1951). Switching device. US Patent No. 2,753,489, 3 July 1956. Filed 29 November 1951. Serial No. 258,774, issued to Siemens & Halske Aktiengesellschaft.
  34. Karatodorov, S. I. (2017). Combined plasma source for emission spectroscopy: laser-induced plasma in hollow cathode discharge. Dr. Thesis. Institute of Solid State Physics, Bulgarian Academy of Sciences. 132 pp. Karatodorov/publication/322661198_Combined_Plasma_Source_for_Emission_Spectroscopy_Laser-Induced_Plasma_in_Hollow_Cathode_Discharge/links/5a673b21aca2720266b44198/Combined-Plasma-Source-for-Emission-Spectroscopy-Laser-Induced-Plasma-in-Hollow-Ca thode-Discharge.pdf (accessed 20.04.2022).
  35. Kilby, J. (1958). Miniaturized electronic circuits. US Patent US3138743A. 23 June 1964. Filed 6 February 1959. (Device was demonstrated in September 1958 to Texas Instruments management).
  36. Lark-Horovitz, K., Bentor, S., Davis, R. E.(1952). Photoelectric and thermo-electric device utilizing semiconducting material. U.S. Patent 2 588 254, 4 March 1952. Filed 9 May 1950, No. 161,002.
  37. Lehovec, K. (Sprague Electric Company). Multiple semiconductor assembly. US Patent No. US3029366A, 10 April 1962. Filed 22 April 1959. No. 808,249.
  38. Looker, Q. (2014). Fabrication Process Development for High-Purity Germanium Radiation Detectors with Amorphous Semiconductor Contacts. PhD dissertation. University of California, Berkeley. https://escholarship.org/content/qt1d14c7t8/qt1d14c7t8_noSplash_d8581bc67bbfabef97cb5a90208c0d28.pdf (accessed 12.03.2022).
  39. Masamba, W. R., Smith, B. W., Krupa, R. J., Winefordner, J. D. (1988). Atomic and ionic fluorescence in an inductively coupled plasma using hollow cathode lamps pulsed at high currents as excitation sources. Appl. Spectrosc., 42, 872–878. https://doi.org/10.1366/0003702884428851 (accessed 12.03.2022).10.1366/0003702884428851
  40. Momentive products data: Permeability of Fused Quartz. www.momentive.com/en-us/categories/quartz/permeability (accessed 12.03.2022).
  41. Moyer, J. W. (1958). Method of making junction semiconductor unit. U.S. Patent 2 842 466, 8 July 1958. Filed 15 June 1954. No. 436,816.
  42. Norman, R., Last, J., Haas, I. (1960). Solid-state micrologic elements. In: IEEE International Solid-State Circuits Conference, Philadelphia, 10–12 February 1960. III, pp. 82–83. DOI:10.1109/ISSCC.1960.115726410.1109/ISSCC.1960.1157264
  43. Ohl, R. S. (1949). Semiconductor translating devices. U.S. Patent 2 750 54, 12 June 1956. Filed 27 April 1949. No. 89,969.
  44. Okumura, T. (2010). Inductively Coupled Plasma Sources and Applications. Hindawi Publishing Corporation. Phys. Res. Int., 2010, 164249. DOI: 10.1155/2010/164249.10.1155/2010/164249
  45. Pfann, W. G. (1952). Semiconductor signal translating device. U.S. Patent by Bell Telephone Laboratories Inc, Filed No 2597 028 at 11.10.1949 as US120661A, and as US120662A at 09.10.1951, then published as US2570978A
  46. Pittaway, L. (1970). Ion Gauges. US Patent, 29.02.1969 priority to Philips corp GB5300769, published 26.06.1973 as US3742343A.
  47. Plasek, M. L., Jorns, B., Choueiri, E. Y., Polk, J. E. (2012). Exploration of RF-Controlled High Current DensityHollow Cathode Concepts. Princeton University publications. https://alfven.princeton.edu/publications/plasek-jpc-2012-4083 (accessed 12.03.2022).10.2514/6.2012-4083
  48. Plasek, M. L., Wordingham, C. J., Choueiri, E. Y., Polk, J. E. (2013). Modeling and Development of the RF-Controlled Hollow Cathode Concept. doi: 10.2514/6.2013-4036. https://arc.aiaa.org/doi/10.2514/6.2013-4036 (accessed 12.03.2022).
  49. Prohaska, T., Irrgeher, J. Zitek, A., Jakubowski, N. (2005). Sector Field Mass Spectrometry for Elemental and Isotopic Analysis. Royal Society of Chemistry. 666 pp.
  50. Reliance Precision Ltd. Clean Assembly and Manufacturing Solutions for the Scientific, Medical and Analytical Industries, p. 11. www.reliance.co.uk/wp-content/uploads/2017/03/SPSI3-Scientific-Issue-B-web.pdf (accessed 12.03.2022).
  51. Rose, P. H., Ryding, G. (2006). Concepts and designs of ion implantation equipment for semiconductor processing. Rev. Sci. Instrum., 77, 111101. doi.org/10.1063/1.235457110.1063/1.2354571
  52. Sah, C. T. (1988). Evolution of the MOS transistor. From concept to VLSI. Proc. IEEE, 76, 1280.10.1109/5.16328
  53. Saxena, A. (2009). Invention of integrated circuits: Untold important facts. World Scientific Publishing Company 564 pp..10.1142/6850
  54. Shockley, W. (1954). Forming semiconductive devices by ionic bombardment. U.S. Patent 2 787 564, 2 April 1957. Filed 28 October 1954. No. 465,393.
  55. Sidenius, G. (1965). The high temperature hollow cathode ion source. Nucl. Instrum. Meth., 38, 19–22.10.1016/0029-554X(65)90096-0
  56. Sparks, M., Teal, G. K. (1953). Method of Making P-N Junctions in Semiconductor Materials. U.S. Patent 2631356. Filed 15 June 1950. Issued 17 March 1953.
  57. Steward, S. A. (1983). Review of hydrogen isotope permeability through materials. www.osti.gov/servlets/purl/5277693/ (accessed 12.03.2022).10.2172/5277693
  58. Sziklai, G. C. (1956). Multielement semiconductor devices. U.S. Patent 2 735 948, 21 February 1956. Filed 21 January 1953. No. 332,459.
  59. Taylor, S., Gibson, J. (2008). Prediction of the effects of imperfect construction of a QMS filter. J. Mass Spectr., 43, 609–616. DOI: 10.1002/jms.1356.10.1002/jms.135618076125
  60. Tarui, Y. (1959). Japanese Patent Shōwa, 34-6175. Japan Patent Office 1959. Filed 26 March 1957.
  61. Turek, M., Drozdziel, A., Pyszniak, K., Maczka, D., Slowinski, B. (2013). Production of doubly charged ions using a hollow cathode ion source with an evaporator. Acta Phys. Pol. A, 123 (5) (Proceedings of the IX International Conference ION 2012, Kazimierz Dolny, Poland, 25–28 June 2012).
  62. Walther, S. R., Pedersen, B. O., McKenna, C. M. (1991). Ion sources for commercial ion implanter applications. Conference Record of the IEEE Particle Accelerator Conference. DOI: 10.1109/PAC.1991.164876. https://accelconf.web.cern.ch/p91/PDF/PAC1991_2088.PDF (accessed 12.03.2022).
  63. Wieser M.E., Brand W.A. (2013). Isotope Ratio Studies Using Mass Spec-trometry. Inductively coupled plasma. In: Encyclopedia of Spectroscopy and Spectrometry (3 edn.). Oxford, London, San-Diego, Cambridge, USA, pp. 488–500.10.1016/B978-0-12-409547-2.05243-4
  64. Williams, J. M., Klepper, C. C., Chivers, D. J., Hazelton, R. C., Freeman, J. H. (2008). Operation and applications of the boron cathodic arc ion source. AIP Conf. Proc., 1066, 469–472. https://doi.org/10.1063/1.3033664 (accessed 12.03.2022).10.1063/1.3033664
  65. Wilson, A. H. (1965). The Theory of Metals (2nd edn.). Cambridge University Press. 345 pp.
  66. Winchester, M. R., Paylinga, R. (2004). Radio-frequency glow discharge spectrometry: A critical review. Spectrochimica Acta Part B, 59, 607–666. DOI:10.1016/j.sab.2004.02.013.10.1016/j.sab.2004.02.013
  67. Woodyard, J. R. (1944). Nonlinear circuit device utilizing germanium. U.S.US Patent filed 02.06.1944 by Sperry Group, granted 14.11.1950 as US538404A, published as US2530110A
DOI: https://doi.org/10.2478/prolas-2022-0030 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 198 - 203
Submitted on: May 24, 2021
|
Accepted on: Mar 27, 2022
|
Published on: Jun 2, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Jānis Blahins, Arnolds Ubelis, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.