Have a personal or library account? Click to login

Physicochemical Quality Evaluation of Fresh-Cut Rosemary (Rosmarinus officinalis L.) Packed and Stored in Biodеgradаblе Film

Open Access
|Sep 2023

References

  1. Antosik, A.K., Kowalska, U., Stobińska, M., Dzieciol, P., Pieczykolan, M., Kozlowska, K., Bartkowiak, A. (2021). Development and characterization of bioactive polypropylene films for food packaging applications. Polymers, 13(3478), 1–16. DOI: https://doi.org/10.3390/polym13203478.
  2. Augspole, I., Kince, T., Skudra, L., Dukalska, L. (2019). Effect of Natureseal AS5 and packaging materials on the microbiological quality of shredded carrots during storage. FoodBalt 2019: 13th Baltic conference on food science and technology “Food. Nutrition. Well-Being”: conference proceedings, 165–169. DOI: 10.22616/FoodBalt.2019.053.
  3. Baghi, F., Gharsallaoui, A., Dumas, E., & Ghnimi, S. (2022). Advancements in biodegradable active films for food packing: effects of nano/microcapsule incorporation. Foods, 11(760), 1–44. DOI: https://doi.org/10.3390/foods11050760.
  4. Carpena, M., Nuńez-Estevez, B., Soria-Lopez, A., Garcia-Oliveira, P., Prieto, M.A. (2021). Essential oils and their application on active packaging systems. Resources, 10(7), 1–20. DOI: https://doi.org/10.3390/resources10010007.
  5. Cãtunescu, G.M., Tofanã, M., Muresan, C., David, A., Stãnilã, S. (2012). Sensory evaluation of minimally processed parsley (Petroselinum crispum), dill (Anethum graveolens) and lovage (Levisticum officinale) stored at refrigeration temperatures. Agriculture, 69(2), 205–212. DOI: https://doi.org/10.15835/buasvmcn–agr:8762.
  6. Dutta, D., & Sit, N. (2022). Application of natural extracts as active ingredient in biopolymer based packaging systems. Journal of Food Science and Technology, 1501, 1–15. DOI: 10.1007/s13197–022–05474–5.
  7. Hernández-García, E., Vargas, M., Gonzalez-Martinez, C., & Chiralt, A. (2021). Biodegradable antimicrobial films for food packaging: effect of antimicrobials on degradation. Foods, 10(1256), 1–23. DOI: https://doi.org/10.3390/foods10061256.
  8. Iturralde-García, R.D., Cinco-Moroyoqui, F.J., Martínez-Cruz, O., Ruiz-Cruz, S., Wong-Corral, F.J., Borboa-Flores, J., Cornejo-Ramírez, Y.I., Bernal-Mercado, A.T., Del-Toro-Sáncez, C.L. (2022). Emerging technologies for prolonging fresh-cut fruits’ quality and safety during storage. Horticulture, 8(731), 1–29. DOI: https://doi.org/10.3390/horticulturae8080731.
  9. Kirse-Ozolina, A., Muizniece-Brasava, S., & Veipa, J. (2019). Effect of various packaging solutions on the quality of hazelnuts in nut-dried fruit mixes. FoodBalt 2019: 13th Baltic conference on food science and technology “Food. Nutrition. Well–Being”: conference proceedings, 216–221. DOI: 10.22616/FoodBalt.2019.007.
  10. Krasnova, I., Dukalska, L., Seglina, D., Juhnevica, K., Sne, E., Karklina, D. (2012). Effect of passive modified atmosphere in different packaging materials on fresh-cut mixed fruit salad quality during storage. World Academy of Science, Engineering and Technology, 67, 1095–1103. DOI: https://doi.org/10.5281/zenodo.1084276.
  11. Lee, J.S., & Chandra, D. (2018). Effects of different packaging materials and methods on the physical, biochemical and sensory qualities of lettuce. Journal of Food Science and Technology. 55(5), 1685–1694. DOI: 10.1007/s13197–018–3081–6.
  12. Lisboa, C.F., de Castro Melo, E., Zotti Sperotto, N.C., Rodrigues Ávila, M.B., da Silva, L.C., Aleman, C.C., de Souza Carneiro, J.C., de Freitas Coelho, A.P., Silva, C.S. (2022). Packaging and storage of medicinal plants. Research, Society and Development, 11(7), 1–18. DOI: https://doi.org/10.33448/rsd–v11i7.24813.
  13. Mastromatteo, M., Conte, A., & Nobile, M.A.D. (2012). Packaging strategies to prolong the shelf life of fresh carrots (Daucus carota L.). Innov. Food Sci. Emer., Vol. 13, 215–220. DOI: https://doi.org/10.1016/j.ifset.2011.10.010.
  14. Saltveit, M.E. (1997). A summary of CA and MA requirements and recommendations for harvested vegetables. In: Salviet ME (ed) Proceedings of the 7th International controlled atmosphere research conference Vol. 4. Vegetables and ornamentals, University of California, Davis, 98–117. DOI: Record ID: 2000–3043.
  15. Srisa, A., Promhuad, K., San, H., Laorenza, Y., Wongphan, P., Wadaugsorn, K., Sodsai, J., Kaewpetch, T., Tansin, K., Harnkarnsujarit, N. (2022). Antibacterial, antifungal and antiviral polymeric food packaging in post-COVID-19 era. Polymers, 14(4042), 1–52. DOI: https://doi.org/10.3390/polym14194042.
  16. Straumite, E., Kruma, Z., Galoburda, R., & Saulite, K. (2012). Effect of blanching on the quality of microwave vacuum dried dill (Anethum graveolens L.). World Academy of Science, Engineering and Technology, 64, 150–156. DOI: 10.5281/zenodo.1080450.
  17. Vieira, T.M., Alves, V.D., & Moldao, M.M. (2022). Application of an eco-friendly antifungal active package to extend the shelf life of fresh red raspberry (Rubus idaeus L., cv ‘Kweli’. Foods, 11(1805), 1–16. DOI: https://doi.org/10.3390/foods11121805.
  18. Yeddes, W., Majdi, H., Gadhoumi, H., Affes, T.G., Mohamed, S.N. (2022). Optimizing ethanol extraction of rosemary leaves and their biological evaluations. Journal of Exploratory Research in Pharmacology, 7(2), 85–94. DOI: 10.14218/JERP.2022.00002.
Language: English
Page range: 66 - 72
Submitted on: Feb 18, 2023
Accepted on: Jun 28, 2023
Published on: Sep 5, 2023
Published by: Latvia University of Life Sciences and Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Ingrīda Augšpole, Irina Sivicka, Sandra Muižniece-Brasava, published by Latvia University of Life Sciences and Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.