Have a personal or library account? Click to login

Chemical and thermal characteristics of soluble polysaccharides from fruit pericarps of the Algerian Argania spinosa

Open Access
|Nov 2020

References

  1. 1. Coma, V. (2013). Polysaccharide-based biomaterials with antimicrobial and antioxidant properties. Polímeros. 23(3), 287–297. DOI: 10.4322/polimeros020ov002.
  2. 2. Majee, S.B., Avlani, D. & Biswas, G.R. (2017). Pharmacological, pharmaceutical, cosmetic and diagnostic applications of sulfated polysaccharides from marine algae and bacteria. Afr. J. Pharm. Pharmacol. 11(5), 68–77. DOI: 10.5897/AJPP2016.4695.
  3. 3. Castro, J.P.L.d., Costa, L.E.C., Pinheiro, M.P., Francisco, T.d.S., Vasconcelos, P.H.M.d., Funari, L.M., Daudt, R.M., Santos, G.R.C.d., Cardozo, N.S.M. & Freitas, A.L.P. (2018). Polysaccharides of red alga Gracilaria intermedia: structure, antioxidant activity and rheological behavior, Polímeros. 28(2), 178–186. DOI: 10.1590/0104-1428.013116.
  4. 4. Khenblouche, A., Bechki, D., Gouamid, M., Charradi, K., Segni, L., Hadjadj, M. & Boughali, S. (2019). Extraction and characterization of cellulose microfibers from Retama raetam stems. Polímeros. 29(1). e2019011. DOI: 10.1590/0104-1428.05218.
  5. 5. Mébarki, M., Hachem, K. & Kaid-Harche, M. (2019). Lignocellulosic fraction of the pericarps of the acorns of Quercus suber and Quercus ilex: isolation, characterization, and biosorption studies in the removal of copper from aqueous solutions. Pol. J. Chem. Tech., 21, 3, 40–47, DOI: 10.2478/pjct-2019-0028.
  6. 6. Hachem, K., Faugeron, C., Kaid-Harche, M. & Gloaguen, V. (2016). Structural Investigation of Cell Wall Xylan Polysaccharides from the Leaves of Algerian Argania spinosa. Molecules. 21(11), 1587. DOI: 10.3390/molecules21111587.627413127879638
  7. 7. Peltier, J.P. (1983). Les séries de l’arganeraie steppique dans le Souss (Maroc). Ecol. Mediterr. 9, 77–88.10.3406/ecmed.1983.1019
  8. 8. Kechairi, R. & Benmahioul, B. (2019). Comportement des plants d’Arganier (Argania spinosa L. Skeels, Sapotaceae) au sud-ouest Algérien (Tindouf, Bechar et Adrar). Int. J. Environ. Stud. 76(5), 800–814. DOI: 10.1080/00207233.2019.1602378.
  9. 9. Kechairi, R. & Abdoun, F. (2016). État des lieux cartographiques de l’arganier Argania spinosa (L.) Skeels (Sapotaceae) en Afrique Nord-Occidentale (Algérie et Sahara Occidental). Int. J. Environ. Stud. 73(2), 286–293. DOI: 10.1080/00207233.2016.1148448.
  10. 10. Sebaa, H.S. & Harche, M.K. (2014). Anatomical structure and ultrastructure of the endocarp cell walls of Argania spinosa (L.) Skeels (Sapotaceae). Micron. 67, 100–106. DOI: 10.1016/j.micron.2014.07.001.25125280
  11. 11. Kenny, L. (2007). Atlas de l’arganier et de l’arganeraie. Agadir: Institut Agronomique et Vétérinaire.
  12. 12. Merouane, A., Noura, A. & Khelifa-Zoubir, M. (2014). In vitro estimate of the energy value of argan from Algeria. Livest Res. Rural Dev. 26(5), 2014.
  13. 13. Blumenkrantz, N. & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Anal. Biochem. 54(2), 484–489. DOI: 10.1016/0003-2697(73)90377-1.
  14. 14. Selvendran, R.R., March J.F. & Ring, S.G. (1979). Determination of aldoses and uronic acid content of vegetable fiber. Anal. Biochem. 96(2), 282–292. DOI: 10.1016/0003-2697(79)90583-9.
  15. 15. Boudraa, K., Bouchaour, T. & Maschke, U. (2019). Thermal analysis of interpenetrating polymer networks through molecular dynamics simulations: a comparison with experiments. J. Therm. Anal. Calorim. 140, 1845–1857. DOI: 10.1007/s10973-019-08898-y.
  16. 16. Boudraa, K.E., Bouchaour, T., Beyens, C. & Maschke, U. (2020). Novel interpenetrating polymer network composed of poly(butyl acrylates) and poly(ethyl-hexyl acrylate). Int. J. Polym. Anal. Char. 25(1), 18–33. DOI: 10.1080/1023666x.2020.1737467.
  17. 17. Schols, H.A. & Voragen, A.G.J. (1996). In J. Visser, & A.G.J. Voragen, (Eds.), Pectins and pectinases (pp. 3–19).: Amsterdam: Elsevier Science BV.
  18. 18. Aboughe-Angone, S., Nguema-Ona, E., Ghosh, P., Lerouge, P., Ishii, T., Ray, B. & Driouich, A. (2008). Cell wall carbohydrates from fruit pulp of Argania spinosa: structural analysis of pectin and xyloglucan polysaccharides. Carbohydr. Res. 343(1), 67–72. DOI: 10.1016/j.carres.2007.10.01818005949
  19. 19. Stitt, M. & Zeeman, S.C. (2012). Starch turnover: pathways, regulation and role in growth. Curr. Opin. Plant Biol. 15(3), 282–292. DOI: 10.1016/j.pbi.2012.03.016.22541711
  20. 20. Yang, B., Jiang, Y., Zhao, M., Chen, F., Wang, R., Chen, Y. & Zhang, D. (2009). Structural characterisation of polysaccharides purified from longan (Dimocarpus longan Lour.) fruit pericarp. Food Chem. 115(2), 609–614. DOI: 10.1016/j.foodchem.2008.12.082.
  21. 21. Mébarki, M., Hachem, K., Faugeron-Girard, C., Mezemaze, R.H. & Kaid-Harche, M (2019). Extraction and analysis of the parietal polysaccharides of acorn pericarps from Quercus trees. Polímeros. 29(3), e2019044. DOI: 10.1590/0104-1428.06119.
  22. 22. Hu, R., Xu, Y., Yu, C., He, K., Tang, Q., Jia, C., He, G., Wang, X., Kong, Y. & Zhou, G. (2017). Transcriptome analysis of genes involved in secondary cell wall biosynthesis in developing internodes of Miscanthus lutarioriparius. Sci. Rep. 7(1), 9034. DOI: 10.1038/s41598-017-08690-8.556737228831170
  23. 23. Habibi, Y. & Vignon, M.R. (2005). Isolation and characterization of xylans from seed pericarp of Argania spinosa fruit. Carbohydr. Res. 340(7), 1431–1436. DOI: 10.1016/j.carres.2005.01.039. PMid:15854618.15854618
  24. 24. Habibi, Y., Heux, L., Mahrouz, M. & Vignon, M.R. (2008). Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydr. Polym. 72(1), 102–112. DOI: 10.1016/j.carbpol.2007.07.032.
  25. 25. Taboada, E., Fisher, P., Jara, R., Zúñiga, E., Gidekel, M., Cabrera, J.C., Pereira, E., Gutierrez-Moraga, A., Villalonga, R. & Cabrera, G. (2010). Isolation and characterisation of pectic substances from murta (Ugni molinae Turcz) fruits. Food Chem. 123(3), 669–678. DOI: 10.1016/j.foodchem.2010.05.030.
  26. 26. Kacurakova, M., Wellner, N., Ebringerova, A., Hromidkova, Z., Wilson, R.H. & Belton, P.S. (1999). Characterization of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-raman spectroscopies. Food Hydrocoll. 13(1), 35–41. DOI: 10.1016/S0268-005X(98)00067-8.
  27. 27. Hachem, K., Faugeron-Girard, C., Kaid-Harche, M. & Gloaguen, V. (2017). Acid hydrolysis of xylan polysaccharides fractions isolated from argan (Argania spinosa) leaves. Cogent Chem. 3, 1370684. DOI: 10.1080/23312009.2017.1370684.
  28. 28. Yang, H., Yan, R., Chen, H., Lee, D.H. & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86(12–13), 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.
  29. 29. Xu, Q.X., Shi, J.J., Zhang, J.G., Li, L., Jiang, L. & Wei, Z.J. (2016). Thermal, emulsifying and rheological properties of polysaccharides sequentially extracted from Vaccinium bracteatum Thunb. leaves. Int. J. Biol. Macromol. 93, 1240–1252. DOI: 10.1016/j.ijbiomac.2016.09.098
  30. 30. Sun, X.F., Sun, R.C., Tomkinson, J. & Baird, M.S. (2003). Preparation of sugarcane bagasse hemicellulosic succinates using NBS as catalyst. Carbohydr. Polym. 53(4), 483–495. DOI: 10.1016/S0144-8617(03)00150-4.
  31. 31. Winkler, H., Vorwerg, W. & Rihm, R. (2014). Thermal and mechanical properties of fatty acid starch esters. Carbohydr. Polym. 102, 941–949. DOI: 10.1016/j.carbpol.2013.10.040.24507367
  32. 32. Ball, R., McIntosh, A.C. & Brindley, J. (2004). Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combust. Theor. Model. 8(2), 281–91. DOI: 10.1088/1364-7830/8/2/005.
  33. 33. Di Blasi, C., Branca, C., Sarnataro, F.E. & Gallo, A. (2014). Thermal Runaway in the Pyrolysis of Some Lignocellulosic Biomasses. Energ. Fuel. 28(4), 2684–2696. DOI: 10.1021/ef500296g.
  34. 34. Werner, K., Pommer, L. & Broström, M. (2014). Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrol. 110, 130–137. DOI: 10.1016/j.jaap.2014.08.013.
Language: English
Page range: 17 - 21
Published on: Nov 26, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Kadda Hachem, Kamel Eddine Boudraa, Meriem Kaid-Harche, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.