Have a personal or library account? Click to login
Free radical scavenging ability of sodium lignosulfonate and its application in food grade polypropylene Cover

Free radical scavenging ability of sodium lignosulfonate and its application in food grade polypropylene

Open Access
|May 2020

References

  1. 1. Boone, J., Lox, F. & Pottie, S. (1993). Deficiencies of polypropylene in its use as a food-packaging material – a review. Packaging Technol. Sci. 6(5), 277–281. DOI: 10.1002/pts.2770060508.10.1002/pts.2770060508
  2. 2. Bati, B., Celik, I. & Dogan, A. (2014). Determination of hepatoprotective and antioxidant role of walnuts against ethanol-induced oxidative stress in rats. Cell Biochem. Biophys. 71(2), 1191–1198. DOI: 10.1007/s12013-014-0328-3.10.1007/s12013-014-0328-325391888
  3. 3. Lee, M.C.I., Velayutham, M., Komatsu, T., Hille, R. & Zweier, J.L. (2014). Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox--regulated pathway of radical generation in ischemic tissues. Biochem. 53(41), 6615–6623. DOI: 10.1021/bi500582r.10.1021/bi500582r420489225243829
  4. 4. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 0–84. DOI: 10.1016/j.biocel.2006.07.001.10.1016/j.biocel.2006.07.00116978905
  5. 5. Finkel, T. & Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408(6809), 239–247. DOI: 10.1038/35041687.10.1038/3504168711089981
  6. 6. Kamal-Eldin, A. & Appelqvist, LA. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7), 671–701. DOI: 10.1007/bf02522884.10.1007/BF025228848827691
  7. 7. Shogren, R.L. & Biswas, A. (2013). Preparation of starch– sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity. Carbohydr. Polym. 91(2), 581–585. DOI: 10.1016/j.carbpol.2012.08.079.10.1016/j.carbpol.2012.08.07923121948
  8. 8. Trinh, L.T.P., Lee, Y.J., Lee, J.W., Bae, H.J. & Lee, H.J. (2013). Recovery of an ionic liquid [BMIM]Cl from a hydro-lysate of lignocellulosic biomass using electrodialysis. Separ. Purific. Technol. 120, 86–91. DOI: 10.1016/j.seppur.2013.09.025.10.1016/j.seppur.2013.09.025
  9. 9. Wang, X., Zhou, J.H., Li, H.M. & Sun, G.W. (2013). Depolymerization of lignin with supercritical fluids: a review. Adv. Mater. Res. 821–822, 1126–1134. DOI: 10.4028/www.scientific.net/AMR.821-822.1126.10.4028/www.scientific.net/AMR.821-822.1126
  10. 10. Xue, Y., Luan, Q., Yang, D., Yao, X. & Zhou, K. (2011). Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C. 115(11), 4433–4438. DOI: 10.1021/jp109819u.10.1021/jp109819u
  11. 11. Chioua, M., Sucunza, D., Soriano, E., Hadjipavlou-Litina, D., Alcázar, A., Ayuso, I., Oset-Gasque, M.J., González, M.P., Monjas, L., Rodríguez-Franco, M.I., Marco-Contelles, J. & Samadi, A. (2012) α-Aryl-N-alkyl Nitrones, as potential agents for stroke treatment: Synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties. J. Med. Chem. 55(1), 153–168. DOI: 10.1021/jm201105a.10.1021/jm201105a
  12. 12. Okawa, M., Kinjo, J., Nohara, T. & Ono, M. (2001). DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol. Pharmac. Bull. 24(10), 1202–1205. DOI: 10.1016/S0925-9635(97)00165-9.10.1016/S0925-9635(97)00165-9
  13. 13. Nenadis, N. & Tsimidou, M. (2002). Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH•) tests. J. Amer. Oil Chemists’ Soc. 79(12), 1191–1195. DOI: 10.1007/s11746-002-0626-z.10.1007/s11746-002-0626-z
  14. 14. Aoshima, H., Tsunoue, H., Koda, H. & Kiso, Y. (2004). Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J. Agric. Food Chem. 52(16), 5240–5244. DOI: 10.1021/jf049817s.10.1021/jf049817s
  15. 15. Sendra, J.M., Sentandreu, E. & Navarro, J. L. (2006). Reduction kinetics of the free stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) for determination of the antiradical activity of citrus juices. Europ. Food Res. Technol. 223(5), 615–624. DOI: 10.1007/s00217-005-0243-3.10.1007/s00217-005-0243-3
  16. 16. Yue-Jun, H.E., Yong-De, Y. & Feng, T. (2009). Detection of antioxidative capacity of essential oils from the bamboo leaves by scavenging organic free radical DPPH. J. Anhui Agric. Univ. 36(3), 408–412. DOI: 10.1016/j.elecom.2008.10.019.10.1016/j.elecom.2008.10.019
  17. 17. Su-Hua, G., Md, Y.F. & Peng, L. S. (2010). A comparison of the antioxidant properties and total phenolic content in a diatom, chaetoceros sp. and a green microalga, nannochloropsis sp. J. Agric. Sci. 2(3). DOI: 10.5539/jas.v2n3p123.10.5539/jas.v2n3p123
  18. 18. Apak, R., Gorinstein, S., Bohm, V., Schaich, K.M., Ozyurek, M. & Guclu, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Chem. Internat. – IUPAC. 35(3). DOI: 10.1515/ci.2013.35.3.22a.10.1515/ci.2013.35.3.22a
  19. 19. Ding & Hsiou-Yu. (2011). Extracts and constituents of rubus chingii with 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Internat. J. Molec. Sci. 12(12), 3941–3949. DOI: 10.3390/ijms12063941.10.3390/ijms12063941
  20. 20. Bell, J.C.L. (1982). Determination of floc sizes in kaolin suspensions dispersed by sodium lignosulphonate. Colloids & Surfaces 5(4), 285–299. DOI: 10.1016/0166-6622(82)80041-3.10.1016/0166-6622(82)80041-3
  21. 21. Chung, S.Y., Han, S.H., Lee, S.W. & Rhee, C. (2012). Effect of maillard reaction products prepared from glucose– glycine model systems on starch digestibility. Starch – Strke 64(8), 0–0. DOI: 10.1002/star.201100176.10.1002/star.201100176
  22. 22. Gülçin. I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217(2–3), 213–220. DOI: 10.1016/j.tox.2005.09.011.10.1016/j.tox.2005.09.01116243424
  23. 23. Walling, C. & Buckler, S.A. (1955). The reaction of oxygen with organometallic compounds. a new synthesis of hydroperoxides. J. Amer. Chem. Soc. 77(22), 59–63. DOI: 10.1021/ja01627a069.10.1021/ja01627a069
  24. 24. Gentile, G., Ambrogi, V., Cerruti, P., Di Maio, R., Nasi, G. & Carfagna, C. (2014). Pros and cons of melt annealing on the properties of?mwcnt/polypropylene composites. Polym. Degrad. & Stability. 110, 56–64. DOI: 10.1016/j.polymdegrad-stab.2014.08.018.
  25. 25. Thornberry, T., Carroll, M.A., Keeler, G.J., Sillman, S., Bertman, S.B. & Pippin, M.R. (2001). Observations of reactive oxidized nitrogen and speciation of no y, during the prophet summer 1998 intensive. J. Geophys. Res. Atmosph. 106(D20), 24359–24386. DOI: 10.1029/2000JD900760.10.1029/2000JD900760
  26. 26. Wang, Z., Qin, W.Z., Bao, S., Chen, X., Zhang, F.L., & Li, D.S. (2013). The influences of aerobic and anaerobic conditions on PHB and glycerin yields in the process of lignin degradation by pseudomonas stutzeri p156. Adv. Mater. Res. 634–638, 1170–1174. DOI: 10.4028/www.scientific.net/AMR.634-638.1170.10.4028/www.scientific.net/AMR.634-638.1170
  27. 27. Dizhbite, T., Telysheva, G., Jurkjane, V. & Viesturs, U. (2004). Characterization of the radical scavenging activity of lignins––natural antioxidants. Biores. Technol. 95(3), 309–317. DOI: 10.1016/j.biortech.2004.02.024.10.1016/j.biortech.2004.02.02415288274
  28. 28. Fraga, C.G., Galleano, M., Verstraeten, S.V. & Oteiza, P.I. (2010). Basic biochemical mechanisms behind the health benefits of polyphenols. Molec. Aspects Med. 31(6), 0–445. DOI: 10.1016/j.mam.2010.09.006.10.1016/j.mam.2010.09.00620854840
  29. 29. Liu, Y., Hu, T., Wu, Z., Zeng, G., Huang, D. & Shen, Y. (2014). Study on biodegradation process of lignin by FTIR and DSC. Environ. Sci. & Pollut. Res. 21(24), 14004–14013. DOI: 10.1007/s11356-014-3342-5.10.1007/s11356-014-3342-525037100
  30. 30. Lambert, J.B., Gronert, S., Shurvell, HF., Lightner, D., Cooks, R.G. & Pearson. (2006). Organic structural spectroscopy: pearson new international edition. J. Labelled Compounds. 44(S1), S826–S828. DOI: 10.2514/6.2006-6905.10.2514/6.2006-6905
  31. 31. Xu, H., Yu, G., Mu, X., Zhang, C., Deroussel, P. & Liu, C. (2015). Effect and characterization of sodium lignosulfonate on alkali pretreatment for enhancing enzymatic saccharification of corn stover. Ind. Crops & Products. 76, 638–646. DOI: 10.1016/j.indcrop.2015.07.057.10.1016/j.indcrop.2015.07.057
  32. 32. Sadeghifar, H. & Argyropoulos, D.S. (2015). Correlations of the antioxidant properties of softwood kraft lignin fractions with the thermal stability of its blends with polyethylene. ACS Sustainable Chem. & Engin. 3(2), 349–356. DOI: 10.1021/sc500756n.10.1021/sc500756n
  33. 33. Zhao, M.J., Jung, L., Tanielian, C. & Mechin, R. (1994). Kinetics of the competitive degradation of deoxyri-bose and other biomolecules by hydroxyl radicals produced by the fenton reaction. Free Rad. Res. 20(6), 345–363. DOI: 10.3109/10715769409145635.10.3109/107157694091456358081451
  34. 34. Silva, D. & Gabriel. (2012). Reaction of methacrolein with the hydroxyl radical in air: incorporation of secondary O\r, 2\r, addition into the MACR + OH master equation. J. Phys. Chem. A. 116(22), 5317–5324. DOI: 10.1021/jp303806w.10.1021/jp303806w22591164
  35. 35. Kang, S., Chang, J. & Fan, J. (2015). Phenolic antioxidant production by hydrothermal liquefaction of lignin. Energy Sourc., Part A: Recov., Utilizat., Environ. Effects. 37(5), 494–500. DOI: 10.1080/15567036.2011.585386.10.1080/15567036.2011.585386
  36. 36. Li, Z. & Ge, Y. (2012). Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures. Inter. J. Biol. Macromol. 51(5). DOI: 10.1016/j. ijbiomac.2012.09.004.
  37. 37. Yoshinori, K. & Seiichiro, F. (2011). Radical-scavenging activity of dietary phytophenols in combination with co-antioxidants using the induction period method. Molecules 16(12), 10457–10470. DOI: 10.3390/molecules161210457.10.3390/molecules161210457626475022173338
  38. 38. Alvarez-Suarez, J., Tulipani, S., Romandini, S., Vidal, A. & Battino, M. (2009). Methodological aspects about determination of phenolic compounds and in vitro evaluation of antioxidant capacity in the honey: a review. Current Anal. Chem. 5(4), 293–302. DOI: 10.2174/157341109789077768.10.2174/157341109789077768
Language: English
Page range: 56 - 66
Published on: May 13, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Dilhumar Musajian, Gvlmira Hasan, Mingyu He, Mamatjan Yimit, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.