Have a personal or library account? Click to login
Integrating X-ray fluorescence and X-ray computed tomography for comprehensive analysis of historical ceramics from the Kraków Upland Cover

Integrating X-ray fluorescence and X-ray computed tomography for comprehensive analysis of historical ceramics from the Kraków Upland

Open Access
|Oct 2025

References

  1. Gomart, L., Weiner, A., Gabriele, M., Durrenmath, G., Sorin, S., Angeli, L., Colombo, M., Fabbri, C., Maggi, R., Panelli, C., Pisani, D. F., Radi, G., Tozzi, C., & Binder, D. (2017). Spiralled patchwork in pottery manufacture and the introduction of farming to Southern Europe. Antiquity, 91(360), 1501–1514. DOI: 10.15184/AQY.2017.187.
  2. Heimann, R. B., & Maggetti, M. (2019). The struggle between thermodynamics and kinetics: Phase evolution of ancient and historical ceramics. In European Mineralogical Union Notes in Mineralogy (pp. 233–281). Mineralogical Society.
  3. Auch, M. (2017). The early medieval settlement complex at Czermno in the light of results from past research. Pottery finds (Vol. III). Kraków-Leipzig-Rzeszów-Warszawa.
  4. Stoksik, H. (2007). Technologia warsztatu ceramicznego średniowiecznego Śląska w świetle badań specjalistycznych i eksperymentalnych. Wrocław: Papieski Wydział Teologiczny.
  5. Chubarov, V. M., Pashkova, G. V., Maltsev, A. S., Mukhamedova, M. M., Statkus, M. A., & Revenko, A. G. (2024). Possibilities and limitations of various X-ray fluorescence techniques in studying the chemical composition of ancient ceramics. Zhurnal Analiticheskoi Khimii, 79(3), 195–209.
  6. Ownby, M. F., Ferguson, J. R., Borck, L., Clark, J. J., & Huntley, D. (2022). Combining Big Data and Thick Data: Scalar issues when integrating neutron activation and petrographic data as illustrated through a ceramic study from the Southern US Southwest. Archaeol. Anthropol. Sci., 14, 110. https://doi.org/10.1007/s12520-022-01567-6.
  7. Hsieh, J., Nett, B., Yu, Z., Sauer, K., Thibault, J. B., & Bouman, C. A. (2013). Recent advances in CT image reconstruction. Curr. Radiol. Rep., 1, 39–51. https://doi.org/10.1007/s40134-012-0003-7.
  8. Beister, M., Kolditz, D., & Kalender, W. A. (2012). Iterative reconstruction methods in X-ray CT. Phys. Med., 28, 94–108.
  9. Feldkamp, L. A., Davis, L. C., & Kress, J. W. (1984). Practical cone-beam algorithm. J. Opt. Soc. Am. A, 1(6), 612–619. https://doi.org/10.1364/OA_License_v1#VOR.
  10. Gordon, R., Bender, R., & Herman, G. T. (1970). Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol., 29(3), 471–481. DOI: 10.1016/0022-5193(70)90109-8.
  11. Berg, I. (2008). Looking through pots: recent advances in ceramics X-radiography. J. Archaeol. Sci., 35, 1177–1188.
  12. Abraham, E., Bessou, M., Ziéglé, A., Hervé, M. C., Szentmiklósi, L., Kasztovszky, Z. S., Kis, Z., & Menu, M. (2014). Terahertz, X-ray and neutron computed tomography of an Eighteenth Dynasty Egyptian sealed pottery. Appl. Phys. A-Mater Sci. Process., 117, 963–972.
  13. Barron, A., & Denham, T. (2018). A microCT protocol for the visualisation and identification of domesticated plant remains within pottery sherds. J. Archaeol. Sci. Rep., 21, 350–358.
  14. Gait, J., Bajnok, K., Szilágyi, V., Szenti, I., Kukovecz, Á., & Kis, Z. (2022). Quantitative 3D orientation analysis of particles and voids to differentiate hand-built pottery forming techniques using X-ray microtomography and neutron tomography. Archaeol. Anthropol. Sci., 14, 223. https://doi.org/10.1007/s12520-022-01688-y.
  15. Spataro, M., Taylor, J., & O'Flynn, D. (2023). A technological study of Assyrian clay tablets from Nineveh, Tell Halaf and Nimrud: a pilot case study. Archaeol. Anthropol. Sci., 14, 223. https://doi.org/10.1007/s12520-023-01761-0.
  16. Kahl, W. A., & Ramminger, B. (2012). Non-destructive fabric analysis of prehistoric pottery using highresolution X-ray microtomography: A pilot study on the late Mesolithic to Neolithic site Hamburg-Boberg. J. Archaeol. Sci., 39, 2206–2219.
  17. Kozatsas, J., Kotsakis, K., Sagris, D., & David, K. (2018). Inside out: Assessing pottery forming techniques with micro-CT scanning. An example from Middle Neolithic Thessaly. J. Archaeol. Sci., 100, 102–119.
  18. Takenouchi, K., & Yamahana, K. (2021). Fine pottery shaping techniques in Predynastic Egypt: A pilot study on non-destructive analysis using an X-ray CT scanning system. J. Archaeol. Sci. Rep., 37, 102989. https://doi.org/10.1016/j.jasrep.2021.102989.
  19. Kyle, J. R., & Ketcham, R. A. (2015). Application of high resolution X-ray computed tomography to mineral deposit origin, evaluation, and processing. Ore Geol. Rev., 65, 821–839.
  20. Ketcham, R. A., & Carlson, W. D. (2001). Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput. Geosci., 27, 381–400.
  21. Dal Sasso, G., Maritan, L., Salvatori, S., Mazzoli, C., & Artioli, G. (2014). Discriminating pottery production by image analysis: A case study of Mesolithic and Neolithic pottery from Al Khiday (Khartoum, Sudan). J. Archaeol. Sci., 46, 125–143.
  22. Wojenka, M. (2016a). Jerzmanowice-Stara Wieś. Nowo odkryta warownia średniowieczna na Wyżynie Krakowsko-Częstochowskiej. In B. Chudzińska, M. Wojenka & M. Wołoszyn (Eds.), Od Bachórza do Światowida ze Zbrucza (pp. 663–673). Kraków-Rzeszów: Instytut Archeologii i Etnologii PAN, Wydawnictwo Uniwersytetu Rzeszowskiego
  23. Wojenka, M., Bojęś-Białasik, A., & Szyma, M. (2019). Trzynastowieczna zabudowa murowana w Grodzisku koło Skały w świetle wyników najnowszych badań archeologiczno-architektonicznych. In M. Wojenka & S. Langner (Eds.), Konwent Klarysek skalskich a dziedzictwo kulturowe i religijne bł. Salomei (pp. 69–110). Kielce: Wydawnictwo „Jedność”.
  24. Wojenka, M. (2016b). Sprawozdanie z badań wykopaliskowych przeprowadzonych na zamku w Ojcowie w latach 2006–2014. Prądnik. Prace i Materiały Muzeum im. Prof. Władysława Szafera, 26, 199–224.
  25. Niegoda, J. (1999). Naczynia ceramiczne. Wratislavia Antiqua, 1, 157–182.
  26. Rzeźnik, P. (1995). Ceramika naczyniowa z Ostrowa Tumskiego we Wrocławiu w X–XI wieku. Poznań: Polskie Towarzystwo Przyjaciół Nauk.
  27. Shiraiwa, T., & Fujino, N. (1966). Theoretical calculation of fluorescent X-ray intensities in fluorescent X-ray spectrochemical analysis. Jpn. J. Appl. Phys., 5(10), 886.
  28. GE Sensing & Inspection Technologies. (2015). CT-computed tomography. [Online]. Available at http://www.ge-mcs.com/en/radiography-x-ray/ct-computed-tomography [Accessed 22 Jan 2015].
  29. Feldkamp, L. A., Davis, L. C., & Kress, J. W. (1984). Practical cone-beam algorithm. J. Opt. Soc. Am. A, 6, 612–619.
  30. Volume Graphics GmbH. (2013). Reference Manual VGStudio Max Release 2.0. [Online]. Available from http://www.volumegraphics.com/en/products/vgstudio-max/. [Accessed 8 Oct 2013].
  31. Fiji Software. (2013). Fiji ImageJ. [Online]. Available from http://fiji.sc/Fiji. [Accessed 8 Oct 2013].
  32. Doube, M., Klosowski, M. M., Arganda-Carreras, I., Coldelieres, F. P., Dougherty, R. P., Jackson, J. S., Schmid, B., Hutchinson, J. R., & Shefelbine, S. J. (2010). BoneJ: Free and extensible bone image analysis in ImageJ. Bone, 47, 1076–1079. DOI: 10.1016/j.bone.2010.08.023.
  33. Grim, R. E. (1968). Clay mineralogy. New York: McGraw-Hill.
  34. Rice, P. M. (1987). Pottery analysis. University of Chicago Press.
  35. Quinn, P. S. (2013). Ceramic petrography: The Interpretation of archaeological pottery G related artefacts in thin section. Oxford: Archaeopress.
  36. Maniatis, Y., & Tite, M. S. (1981). Technological examination of Neolithic-Bronze Age pottery from Central and Southeast Europe and from the Near East. J. Archaeol. Sci., 8, 93–108.
  37. Müller, N. S., Kilikoglou, V., Day, P. M., & Vekinis, G. (2010). The influence of temper shape on the mechanical properties of archaeological ceramics. J. Eur. Ceram. Soc., 30, 2457–2465.
  38. Skibo, J. M., Schiffer, M. B., & Reid, K. C. (1989). Organic-tempered pottery: An experimental study. Am. Antiq., 54, 122–146.
  39. Velde, B., & Druc, I. C. (1999). Archaeological ceramic materials: Origin and utilization. Springer.
  40. Reedy, C. L. (2018). Petrography and ceramics. CRC Press.
  41. Heimann, R. B. (2010). Classic and advanced ceramics: From fundamentals to applications. Wiley.
  42. Lifton, J. J. (2015). The influence of scatter and beam hardening in X-ray computed tomography for dimensional metrology. PhD thesis, University of Southampton, Engineering and the Environment.
  43. Schröter, M., Lyv, C., Huang, J., & Huang, K. (2022). Challenges of ‘imaging’ particulate materials in three dimensions. Papers in Physics, 14. https://doi.org/10.4279/pip.140015.
  44. Stock, S. R. (2018). Micro computed tomography methodology and applications. CRC Press.
  45. Tite, M. S. (1999). Pottery production, distribution, and consumption – the contribution of the physical sciences. J. Archaeol. Sci., 26, 285–311.
  46. Rice, P. M. (2015). Pottery analysis (2nd ed.). University of Chicago Press.
  47. Rigby, S. P. (2024). Use of computerized X-ray tomography in the study of the fabrication methods and conservation of ceramics, glass, and stone building materials. Heritage, 7(10), 5687–5722. https://doi.org/10.3390/heritage7100268.
  48. Stock, S. R. (2009). MicroComputed tomography: Methodology and applications. CRC Press.
  49. Feldkamp, L. A., Davis, L. C., & Kress, J. W. (1984). Practical cone-beam algorithm. J. Opt. Soc. Am., 6, 612–619.
  50. Hołubowicz, W. (1950). Garncarstwo wiejskie zachodnich terenów Białorusi. Toruń: Towarzystwo Naukowe w Toruniu.
DOI: https://doi.org/10.2478/nuka-2025-0010 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 97 - 109
Submitted on: Apr 14, 2025
Accepted on: Jun 16, 2025
Published on: Oct 21, 2025
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Romisaa Abdelrahman, Sebastian Wroński, Michał Wojenka, Jacek Tarasiuk, Lucyna Samek, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.