Have a personal or library account? Click to login
DEEP-BTS: Deep Learning based Brain Tissue Segmentation using ResU-Net Model Cover

DEEP-BTS: Deep Learning based Brain Tissue Segmentation using ResU-Net Model

Open Access
|Dec 2025

References

  1. Garg, G. (2023). The Brain Unveiled: Exploring the Wonders of Our Neural World. Gaurav Garg, ISBN 979-8223672531.
  2. Krishna, K. R., Arbaaz, M., Dhanekula, S. N. C., Vallabhaneni, Y. M. (2024). Modified VGG16 for accurate brain tumor detection in MRI imagery. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14 (3), 71–75. http://dx.doi.org/10.35784/iapgos.6035
  3. Raghuram, C., Raju Dandu, V. S. R. K., Jaison, B. (2024). Hybridization of dilated CNN with Attention Link Net for brain cancer classification. International Journal of Data Science and Artificial Intelligence, 2 (2), 35–42.
  4. Yuan, Y., Gao, H., Jiang, S., You, Q., Zhou, J., Chen, J. (2025). Magnetic resonance imaging contrast agents based on albumin nanoparticles. Biomaterials Science, 13 (2), 408–421. http://dx.doi.org/10.1039/d4bm01226g
  5. Relin Francis Raj, J., Vijayalakshmi, K., Kavi Priya, S., Appathurai, A. (2024). Brain tumor segmentation based on kernel fuzzy c-means and penguin search optimization algorithm. Signal, Image and Video Processing, 18 (2), 1793–1802. http://dx.doi.org/10.1007/s11760-023-02849-9
  6. Ahilan, A., Anlin Sahaya Tinu, M., Jasmine Gnana Malar, A., Muthu Kumar, B. (2023). Stationary wavelet-oriented luminance enhancement approach for brain tumor detection with multi-modality images. In Evolution in Computational Intelligence. Springer, 461–473. http://dx.doi.org/10.1007/978-981-99-6702-5_38
  7. Anlin Sahaya Infant Tinu, M., Appathurai, A., Muthukumaran, N. (2024). Detection of brain tumour via reversing hexagonal feature pattern for classifying double-modal brain images. IETE Journal of Research, 70 (8), 7033–7043. http://dx.doi.org/10.1080/03772063.2023.2301663
  8. Rehman, A., Mir, S. Q. (2025). Introduction to medical image segmentation: Overview of modalities, benchmark datasets, data augmentation techniques, and evaluation metrics. In Deep Learning Applications in Medical Image Segmentation: Overview, Approaches, and Challenges. IEEE, 1–26. http://dx.doi.org/10.1002/9781394245369.ch1
  9. Deshpande, A., Estrela, V. V., Jude, A., Hemanth, J. (2025). Computational intelligence in neuroinformatics: Technologies and data analytics. Neuroscience Informatics, 5 (1), 100187. http://dx.doi.org/10.1016/j.neuri.2025.100187
  10. Zilioli, A., Rosenberg, A., Mohanty, R., Matton, A., Granberg, T., Hagman, G., Lötjönen, J., Kivipelto, M., Westman, E. (2025). Brain MRI volumetry and atrophy rating scales as predictors of amyloid status and eligibility for anti-amyloid treatment in a real-world memory clinic setting. Journal of Neurology, 272 (1), 84. http://dx.doi.org/10.1007/s00415-024-12853-9
  11. Muthukumaran, N., Archana, M., Majitha, A., GiftaIrine, S. T. (2022). Analysis of brain tumor using novel image processing approach. In 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE, 1387–1393. http://dx.doi.org/10.1109/icesc54411.2022.9885662
  12. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B. (2024). Segment anything in medical images. Nature Communications, 15 (1), 654. http://dx.doi.org/10.1038/s41467-024-44824-z
  13. Chen, X., Sun, S., Bai, N., Han, K., Liu, Q., Yao, S., Tang, H., Zhang, C., Lu, Z., Huang, Q., Zhao, G., Xu, Y., Chen, T., Xie, X., Liu, Y. (2021). A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Radiotherapy and Oncology, 160, 175–184. http://dx.doi.org/10.1016/j.radonc.2021.04.019
  14. Möller, J., Bartsch, A., Lenz, M., Tischoff, I., Krug, R., Welp, H., Hofmann, M. R., Schmieder, K., Miller, D. (2021). Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases. International Journal of Computer Assisted Radiology and Surgery, 16, 1517–1526. http://dx.doi.org/10.1007/s11548-021-02412-2
  15. Nyatega, C. O., Qiang, L., Adamu, M. J., Kawuwa, H. B. (2022). Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson’s disease: A voxel-based morphometry study. Frontiers in Psychiatry, 13, 1027907. http://dx.doi.org/10.3389/fpsyt.2022.1027907
  16. Mahmood, T., Rehman, A., Saba, T., Nadeem, L., Bahaj, S. A. O. (2023). Recent advancements and future prospects in active deep learning for medical image segmentation and classification. IEEE Access, 11, 113623–113652. http://dx.doi.org/10.1109/access.2023.3313977
  17. Xu, Y., Quan, R., Xu, W., Huang, Y., Chen, X., Liu, F. (2024). Advances in medical image segmentation: A comprehensive review of traditional, deep learning and hybrid approaches. Bioengineering, 11 (10), 1034. http://dx.doi.org/10.3390/bioengineering11101034
  18. Richter, L., Fetit, A. E. (2022). Accurate segmentation of neonatal brain MRI with deep learning. Frontiers in Neuroinformatics, 16, 1006532. http://dx.doi.org/10.3389/fninf.2022.1006532
  19. Mohammadi, Z., Aghaei, A., Moghaddam, M. E. (2024). CycleFormer: Brain tissue segmentation in the presence of Multiple Sclerosis lesions and Intensity Non-Uniformity artifact. Biomedical Signal Processing and Control, 93, 106153. http://dx.doi.org/10.1016/j.bspc.2024.106153
  20. Kollem, S. (2024). An efficient method for MRI brain tumor tissue segmentation and classification using an optimized support vector machine. Multimedia Tools and Applications, 83, 68487–68519. http://dx.doi.org/10.1007/s11042-024-18233-9
  21. Gudise, S., Giri Babu, K., Satya Savithri, T. (2024). An advanced fuzzy C-Means algorithm for the tissue segmentation from brain magnetic resonance images in the presence of noise and intensity inhomogeneity. The Imaging Science Journal, 72 (4), 520–539. http://dx.doi.org/10.1080/13682199.2023.2210400
  22. Daoudi, A., Mahmoudi, S. (2024). Enhancing brain segmentation in MRI through integration of hidden markov random field model and whale optimization algorithm. Computers, 13 (5), 124. http://dx.doi.org/10.3390/computers13050124
  23. Veluchamy, M., Subramani, B. (2021). Brain tissue segmentation for medical decision support systems. Journal of Ambient Intelligence and Humanized Computing, 12 (2), 1851–1868. http://dx.doi.org/10.1007/s12652-020-02257-8
  24. Yamanakkanavar, N., Lee, B. (2020). Using a patch-wise M-net convolutional neural network for tissue segmentation in brain MRI images. IEEE Access, 8, 120946–120958. http://dx.doi.org/10.1109/access.2020.3006317
  25. Long, J.-S., Ma, G.-Z., Song, E.-M., Jin, R.-C. (2021). Learning U-net based multi-scale features in encoding-decoding for MR image brain tissue segmentation. Sensors, 21 (9), 3232. http://dx.doi.org/10.3390/s21093232
  26. Karimi, D., Rollins, C. K., Velasco-Annis, C., Ouaalam, A., Gholipour, A. (2023). Learning to segment fetal brain tissue from noisy annotations. Medical Image Analysis, 85, 102731. http://dx.doi.org/10.1016/j.media.2022.102731
  27. Qi, W., Wei, M., Yang, W., Xu, C., Ma, C. (2020). Automatic mapping of landslides by the ResU-Net. Remote Sensing, 12 (15), 2487. http://dx.doi.org/10.3390/rs12152487
  28. Srikrishna, M., Pereira, J. B., Heckemann, R. A., Volpe, G., van Westen, D., Zettergren, A., Kern, S., Wahlund, L.-O., Westman, E., Skoog, I., Schöll, M. (2021). Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT. Neuroimage, 244, 118606. http://dx.doi.org/10.1016/j.neuroimage.2021.118606
Language: English
Page range: 371 - 379
Submitted on: Feb 21, 2025
|
Accepted on: Sep 8, 2025
|
Published on: Dec 23, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 P Sivaprakash, J Banumathi, Ashis Kumar Mishra, P Jayapriya, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.