References
- Garg, G. (2023). The Brain Unveiled: Exploring the Wonders of Our Neural World. Gaurav Garg, ISBN 979-8223672531.
- Krishna, K. R., Arbaaz, M., Dhanekula, S. N. C., Vallabhaneni, Y. M. (2024). Modified VGG16 for accurate brain tumor detection in MRI imagery. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14 (3), 71–75.
http://dx.doi.org/10.35784/iapgos.6035 - Raghuram, C., Raju Dandu, V. S. R. K., Jaison, B. (2024). Hybridization of dilated CNN with Attention Link Net for brain cancer classification. International Journal of Data Science and Artificial Intelligence, 2 (2), 35–42.
- Yuan, Y., Gao, H., Jiang, S., You, Q., Zhou, J., Chen, J. (2025). Magnetic resonance imaging contrast agents based on albumin nanoparticles. Biomaterials Science, 13 (2), 408–421.
http://dx.doi.org/10.1039/d4bm01226g - Relin Francis Raj, J., Vijayalakshmi, K., Kavi Priya, S., Appathurai, A. (2024). Brain tumor segmentation based on kernel fuzzy c-means and penguin search optimization algorithm. Signal, Image and Video Processing, 18 (2), 1793–1802.
http://dx.doi.org/10.1007/s11760-023-02849-9 - Ahilan, A., Anlin Sahaya Tinu, M., Jasmine Gnana Malar, A., Muthu Kumar, B. (2023). Stationary wavelet-oriented luminance enhancement approach for brain tumor detection with multi-modality images. In Evolution in Computational Intelligence. Springer, 461–473.
http://dx.doi.org/10.1007/978-981-99-6702-5_38 - Anlin Sahaya Infant Tinu, M., Appathurai, A., Muthukumaran, N. (2024). Detection of brain tumour via reversing hexagonal feature pattern for classifying double-modal brain images. IETE Journal of Research, 70 (8), 7033–7043.
http://dx.doi.org/10.1080/03772063.2023.2301663 - Rehman, A., Mir, S. Q. (2025). Introduction to medical image segmentation: Overview of modalities, benchmark datasets, data augmentation techniques, and evaluation metrics. In Deep Learning Applications in Medical Image Segmentation: Overview, Approaches, and Challenges. IEEE, 1–26.
http://dx.doi.org/10.1002/9781394245369.ch1 - Deshpande, A., Estrela, V. V., Jude, A., Hemanth, J. (2025). Computational intelligence in neuroinformatics: Technologies and data analytics. Neuroscience Informatics, 5 (1), 100187.
http://dx.doi.org/10.1016/j.neuri.2025.100187 - Zilioli, A., Rosenberg, A., Mohanty, R., Matton, A., Granberg, T., Hagman, G., Lötjönen, J., Kivipelto, M., Westman, E. (2025). Brain MRI volumetry and atrophy rating scales as predictors of amyloid status and eligibility for anti-amyloid treatment in a real-world memory clinic setting. Journal of Neurology, 272 (1), 84.
http://dx.doi.org/10.1007/s00415-024-12853-9 - Muthukumaran, N., Archana, M., Majitha, A., GiftaIrine, S. T. (2022). Analysis of brain tumor using novel image processing approach. In 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE, 1387–1393.
http://dx.doi.org/10.1109/icesc54411.2022.9885662 - Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B. (2024). Segment anything in medical images. Nature Communications, 15 (1), 654.
http://dx.doi.org/10.1038/s41467-024-44824-z - Chen, X., Sun, S., Bai, N., Han, K., Liu, Q., Yao, S., Tang, H., Zhang, C., Lu, Z., Huang, Q., Zhao, G., Xu, Y., Chen, T., Xie, X., Liu, Y. (2021). A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Radiotherapy and Oncology, 160, 175–184.
http://dx.doi.org/10.1016/j.radonc.2021.04.019 - Möller, J., Bartsch, A., Lenz, M., Tischoff, I., Krug, R., Welp, H., Hofmann, M. R., Schmieder, K., Miller, D. (2021). Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases. International Journal of Computer Assisted Radiology and Surgery, 16, 1517–1526.
http://dx.doi.org/10.1007/s11548-021-02412-2 - Nyatega, C. O., Qiang, L., Adamu, M. J., Kawuwa, H. B. (2022). Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson’s disease: A voxel-based morphometry study. Frontiers in Psychiatry, 13, 1027907.
http://dx.doi.org/10.3389/fpsyt.2022.1027907 - Mahmood, T., Rehman, A., Saba, T., Nadeem, L., Bahaj, S. A. O. (2023). Recent advancements and future prospects in active deep learning for medical image segmentation and classification. IEEE Access, 11, 113623–113652.
http://dx.doi.org/10.1109/access.2023.3313977 - Xu, Y., Quan, R., Xu, W., Huang, Y., Chen, X., Liu, F. (2024). Advances in medical image segmentation: A comprehensive review of traditional, deep learning and hybrid approaches. Bioengineering, 11 (10), 1034.
http://dx.doi.org/10.3390/bioengineering11101034 - Richter, L., Fetit, A. E. (2022). Accurate segmentation of neonatal brain MRI with deep learning. Frontiers in Neuroinformatics, 16, 1006532.
http://dx.doi.org/10.3389/fninf.2022.1006532 - Mohammadi, Z., Aghaei, A., Moghaddam, M. E. (2024). CycleFormer: Brain tissue segmentation in the presence of Multiple Sclerosis lesions and Intensity Non-Uniformity artifact. Biomedical Signal Processing and Control, 93, 106153.
http://dx.doi.org/10.1016/j.bspc.2024.106153 - Kollem, S. (2024). An efficient method for MRI brain tumor tissue segmentation and classification using an optimized support vector machine. Multimedia Tools and Applications, 83, 68487–68519.
http://dx.doi.org/10.1007/s11042-024-18233-9 - Gudise, S., Giri Babu, K., Satya Savithri, T. (2024). An advanced fuzzy C-Means algorithm for the tissue segmentation from brain magnetic resonance images in the presence of noise and intensity inhomogeneity. The Imaging Science Journal, 72 (4), 520–539.
http://dx.doi.org/10.1080/13682199.2023.2210400 - Daoudi, A., Mahmoudi, S. (2024). Enhancing brain segmentation in MRI through integration of hidden markov random field model and whale optimization algorithm. Computers, 13 (5), 124.
http://dx.doi.org/10.3390/computers13050124 - Veluchamy, M., Subramani, B. (2021). Brain tissue segmentation for medical decision support systems. Journal of Ambient Intelligence and Humanized Computing, 12 (2), 1851–1868.
http://dx.doi.org/10.1007/s12652-020-02257-8 - Yamanakkanavar, N., Lee, B. (2020). Using a patch-wise M-net convolutional neural network for tissue segmentation in brain MRI images. IEEE Access, 8, 120946–120958.
http://dx.doi.org/10.1109/access.2020.3006317 - Long, J.-S., Ma, G.-Z., Song, E.-M., Jin, R.-C. (2021). Learning U-net based multi-scale features in encoding-decoding for MR image brain tissue segmentation. Sensors, 21 (9), 3232.
http://dx.doi.org/10.3390/s21093232 - Karimi, D., Rollins, C. K., Velasco-Annis, C., Ouaalam, A., Gholipour, A. (2023). Learning to segment fetal brain tissue from noisy annotations. Medical Image Analysis, 85, 102731.
http://dx.doi.org/10.1016/j.media.2022.102731 - Qi, W., Wei, M., Yang, W., Xu, C., Ma, C. (2020). Automatic mapping of landslides by the ResU-Net. Remote Sensing, 12 (15), 2487.
http://dx.doi.org/10.3390/rs12152487 - Srikrishna, M., Pereira, J. B., Heckemann, R. A., Volpe, G., van Westen, D., Zettergren, A., Kern, S., Wahlund, L.-O., Westman, E., Skoog, I., Schöll, M. (2021). Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT. Neuroimage, 244, 118606.
http://dx.doi.org/10.1016/j.neuroimage.2021.118606