Feng, B., Liu, Z., Zhang, H., Fan, H. (2024). Research on the measurement system and remote calibration technology of a dual linear array camera. Measurement Science Review, 24 (3), 105–112. https://doi.org/10.2478/msr-2024-0015
Murphy-Chutorian, E., Trivedi, M. M. (2010). Head pose estimation and augmented reality tracking: An integrated system and evaluation for monitoring driver awareness. IEEE Transactions on Intelligent Transportation Systems, 11 (2), 300–311. https://doi.org/10.1109/TITS.2010.2044241
Zhao, R., Ali, H., van der Smagt, P. (2017). Two-stream RNN/CNN for action recognition in 3D videos. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS.2017.8206288
Andriluka, M., Roth, S., Schiele, B. (2010). Monocular 3D pose estimation and tracking by detection. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE. https://doi.org/10.1109/CVPR.2010.5540156
Besl, P. J., McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (2), 239–256. https://doi.org/10.1109/34.121791
Myronenko, A., Song, X. (2010). Point set registration: Coherent point drifts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (12), 2262–2275. https://doi.org/10.1109/TPAMI.2010.46
Delavari, M., Foruzan, A. H., Chen, Y.-W. (2019). Accurate point correspondences using a modified coherent point drift algorithm. Biomedical Signal Processing and Control, 52, 429–444. https://doi.org/10.1016/j.bspc.2017.02.009
Biber, P., Strasser, W. (2003). The normal distributions transform: A new approach to laser scan matching. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003). IEEE, 3, 2743–2748. https://doi.org/10.1109/IROS.2003.1249285
Opromolla, R., Fasano, G., Rufino, G., Grassi, M. (2015). A model-based 3D template matching technique for pose acquisition of an uncooperative space object. Sensors, 16 (3), 6360–6382. https://doi.org/10.3390/s150306360
Picos, K., Diaz-Ramirez, V. H., Kober, V., Montemayor, A. S., Pantrigo, J. J. (2016). Accurate three-dimensional pose recognition from monocular images using template matched filtering. Optical Engineering, 55 (6), 063102. https://doi.org/10.1117/1.OE.55.6.063102
Chen, S., Liang, L., Liang, W., Foroosh, H. (2016). 3D pose tracking with multitemplate warping and SIFT correspondences. IEEE Transactions on Circuits and Systems for Video Technology, 26 (11), 2043–2055. https://doi.org/10.1109/TCSVT.2015.2452782
Leng, D. W., Sun, W. D. (2011). Contour-based iterative pose estimation of 3D rigid object. IET Computer Vision, 5 (5), 291–300. https://doi.org/10.1049/iet-cvi.2010.0098
Schlobohm, J., Pösch, A., Reithmeier, E., Rosenhahn, B. (2016). Improving contour based pose estimation for fast 3D measurement of free form objects. Measurement, 92, 79–82. https://doi.org/10.1016/j.measurement.2016.05.093
He, Z., Jiang, Z., Zhao, X., Zhang, S., Wu, C. (2020). Sparse template-based 6-D pose estimation of metal parts using a monocular camera. IEEE Transactions on Industrial Electronics, 67 (1), 390–401. https://doi.org/10.1109/TIE.2019.2897539
Song, K.-T., Wu, C.-H., Jiang, S.-Y. (2017). CAD-based pose estimation design for random bin picking using a RGB-D camera. Journal of Intelligent & Robotic Systems, 87, 455–470. https://doi.org/10.1007/s10846-017-0501-1
Zeng, A., Yu, K.-T., Song, S., Suo, D., Walker, E., Rodriguez, A. (2017). Multi-view self-supervised deep learning for 6D pose estimation in the Amazon Picking Challenge. In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE. https://doi.org/10.1109/ICRA.2017.7989165
Su, Y., Rambach, J., Pagani, A., Stricker, D. (2021). SynPo-Net—Accurate and fast CNN-based 6DoF object pose estimation using synthetic training. Sensors, 21 (1), 300. https://doi.org/10.3390/s21010300
Deng, J., Pan, Y., Yao, T., Zhou, W., Li, H., Mei, T. (2020). Single shot video object detector. IEEE Transactions on Multimedia, 23, 846–858. https://doi.org/10.1109/TMM.2020.2990070
Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T. (2015). FlowNet: Learning optical flow with convolutional networks. In 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2758–2766. https://doi.org/10.1109/ICCV.2015.316