Have a personal or library account? Click to login
Robust Pose Estimation by Fusing Partial Color and Depth Imagery Cover

Robust Pose Estimation by Fusing Partial Color and Depth Imagery

Open Access
|Oct 2025

References

  1. Feng, B., Liu, Z., Zhang, H., Fan, H. (2024). Research on the measurement system and remote calibration technology of a dual linear array camera. Measurement Science Review, 24 (3), 105–112. https://doi.org/10.2478/msr-2024-0015
  2. Murphy-Chutorian, E., Trivedi, M. M. (2010). Head pose estimation and augmented reality tracking: An integrated system and evaluation for monitoring driver awareness. IEEE Transactions on Intelligent Transportation Systems, 11 (2), 300–311. https://doi.org/10.1109/TITS.2010.2044241
  3. Yang, T., Zhao, Q., Wang, X., Zhou, Q. (2018). Sub-pixel chessboard corner localization for camera calibration and pose estimation. Applied Sciences, 8 (11), 2118. https://doi.org/10.3390/app8112118
  4. Zhao, R., Ali, H., van der Smagt, P. (2017). Two-stream RNN/CNN for action recognition in 3D videos. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS.2017.8206288
  5. Andriluka, M., Roth, S., Schiele, B. (2010). Monocular 3D pose estimation and tracking by detection. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE. https://doi.org/10.1109/CVPR.2010.5540156
  6. Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N. (2021). Fiducial markers for pose estimation. Journal of Intelligent & Robotic Systems, 101, 71. https://doi.org/10.1007/s10846-020-01307-9
  7. Besl, P. J., McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (2), 239–256. https://doi.org/10.1109/34.121791
  8. Myronenko, A., Song, X. (2010). Point set registration: Coherent point drifts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (12), 2262–2275. https://doi.org/10.1109/TPAMI.2010.46
  9. Delavari, M., Foruzan, A. H., Chen, Y.-W. (2019). Accurate point correspondences using a modified coherent point drift algorithm. Biomedical Signal Processing and Control, 52, 429–444. https://doi.org/10.1016/j.bspc.2017.02.009
  10. Biber, P., Strasser, W. (2003). The normal distributions transform: A new approach to laser scan matching. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003). IEEE, 3, 2743–2748. https://doi.org/10.1109/IROS.2003.1249285
  11. Opromolla, R., Fasano, G., Rufino, G., Grassi, M. (2015). A model-based 3D template matching technique for pose acquisition of an uncooperative space object. Sensors, 16 (3), 6360–6382. https://doi.org/10.3390/s150306360
  12. Picos, K., Diaz-Ramirez, V. H., Kober, V., Montemayor, A. S., Pantrigo, J. J. (2016). Accurate three-dimensional pose recognition from monocular images using template matched filtering. Optical Engineering, 55 (6), 063102. https://doi.org/10.1117/1.OE.55.6.063102
  13. Chen, S., Liang, L., Liang, W., Foroosh, H. (2016). 3D pose tracking with multitemplate warping and SIFT correspondences. IEEE Transactions on Circuits and Systems for Video Technology, 26 (11), 2043–2055. https://doi.org/10.1109/TCSVT.2015.2452782
  14. Leng, D. W., Sun, W. D. (2011). Contour-based iterative pose estimation of 3D rigid object. IET Computer Vision, 5 (5), 291–300. https://doi.org/10.1049/iet-cvi.2010.0098
  15. Schlobohm, J., Pösch, A., Reithmeier, E., Rosenhahn, B. (2016). Improving contour based pose estimation for fast 3D measurement of free form objects. Measurement, 92, 79–82. https://doi.org/10.1016/j.measurement.2016.05.093
  16. Zhang, X., Jiang, Z., Zhang, H., Wei, Q. (2018). Vision-based pose estimation for textureless space objects by contour points matching. IEEE Transactions on Aerospace and Electronic Systems, 54 (5), 2342–2355. https://doi.org/10.1109/TAES.2018.2815879
  17. Wang, B., Zhong, F., Qin, X. (2019). Robust edge-based 3D object tracking with direction-based pose validation. Multimedia Tools and Applications, 78 (9), 12307–12331. https://doi.org/10.1007/s11042-018-6727-5
  18. He, Z., Jiang, Z., Zhao, X., Zhang, S., Wu, C. (2020). Sparse template-based 6-D pose estimation of metal parts using a monocular camera. IEEE Transactions on Industrial Electronics, 67 (1), 390–401. https://doi.org/10.1109/TIE.2019.2897539
  19. Tsai, C.-Y., Hsu, K.-J., Nisar, H. (2018). Efficient model-based object pose estimation based on multi-template tracking and PnP algorithms. Algorithms, 11 (8), 122. https://doi.org/10.3390/a11080122
  20. Song, K.-T., Wu, C.-H., Jiang, S.-Y. (2017). CAD-based pose estimation design for random bin picking using a RGB-D camera. Journal of Intelligent & Robotic Systems, 87, 455–470. https://doi.org/10.1007/s10846-017-0501-1
  21. Zeng, A., Yu, K.-T., Song, S., Suo, D., Walker, E., Rodriguez, A. (2017). Multi-view self-supervised deep learning for 6D pose estimation in the Amazon Picking Challenge. In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE. https://doi.org/10.1109/ICRA.2017.7989165
  22. Le, T., Hamilton, L., Torralba, A. (2017). Benchmarking convolutional neural networks for object segmentation and pose estimation. In 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE. https://doi.org/10.1109/AIPR.2017.8457943
  23. Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C. (2014). Learning 6D object pose estimation using 3D object coordinates. In Computer Vision - ECCV 2014. Springer, LNIP 8690, 536–551. https://doi.org/10.1007/978-3-319-10605-2_35
  24. Su, Y., Rambach, J., Pagani, A., Stricker, D. (2021). SynPo-Net—Accurate and fast CNN-based 6DoF object pose estimation using synthetic training. Sensors, 21 (1), 300. https://doi.org/10.3390/s21010300
  25. Deng, J., Pan, Y., Yao, T., Zhou, W., Li, H., Mei, T. (2020). Single shot video object detector. IEEE Transactions on Multimedia, 23, 846–858. https://doi.org/10.1109/TMM.2020.2990070
  26. Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T. (2015). FlowNet: Learning optical flow with convolutional networks. In 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2758–2766. https://doi.org/10.1109/ICCV.2015.316
Language: English
Page range: 309 - 314
Submitted on: Sep 29, 2024
Accepted on: Sep 16, 2025
Published on: Oct 31, 2025
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Mehmet Akif Alper, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.