References
- Varanasi, V.G., Velten, M.F., Odatsu, T., Ilyas, A., Surface modifications and surface characterization of biomaterials used in bone healing, materials and devices for bone disorders, Academic Press, Massachusetts, USA, 2017, pp. 405–452
-
[2]
Karageorgiou, V., Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 2005, 26: 5474–5491. 10.1016/j.biomaterials.2005.02.002
Karageorgiou V. Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis Biomaterials 2005 26 5474 5491 10.1016/j.biomaterials.2005.02.002
-
[3]
Arifin, A., Sulong, A.B., Muhamad, N., Syarif, J., Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review, Mater. Des., 2014, 55: 165–175. 10.1016/j.matdes.2013.09.045
Arifin A. Sulong A.B. Muhamad N. Syarif J. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review Mater. Des. 2014 55 165 175 10.1016/j.matdes.2013.09.045
-
[4]
Kayabas, O., Yuzbasıoglu, E., Erzincanl, F., Static, dynamic and fatigue behaviors of dental implant using finite element method, Adv. Eng. Softw., 2006, 37: 649–658. 10.1016/j.advengsoft.2006.02.004
Kayabas O. Yuzbasıoglu E. Erzincanl F. Static, dynamic and fatigue behaviors of dental implant using finite element method Adv. Eng. Softw. 2006 37 649 658 10.1016/j.advengsoft.2006.02.004
-
[5]
Wang, X., Wang, Y., Zhang, T., Liu, X., Flash joining of C/C composite with Ag-Cu-Ti filler by spark plasma sintering: The promoting and inhibiting effects on the interfacial reactions, Ceram. Int., 2025, 51: 10169–10173. 10.1016/j.ceramint.2024.12.447
Wang X. Wang Y. Zhang T. Liu X. Flash joining of C/C composite with Ag-Cu-Ti filler by spark plasma sintering: The promoting and inhibiting effects on the interfacial reactions Ceram. Int. 2025 51 10169 10173 10.1016/j.ceramint.2024.12.447
- Ehsani, N., Abdulahi, A., Sintering of powder metallurgy parts using plasma arc (SPS), Iran. J. Man. Eng., 2012, 46: 35–43
- Ayodele, O.O., Shongwe, M.B., Obadele, B.A., Olubambi, P., Spark plasma sintering of materials: advances in processing and applications, Part VIII, Spark Plasma Sintering of Titanium-Based Materials, Spark Plasma Sintering of Materials, Springer Nature, Switzerland, 2019, pp. 673–701
-
[8]
Falodun, O.E., Obadele, B.A., Oke, S.R., Ige, O., Olubambi, P., Lethabane, L., et al., Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN, Trans. Nonferrous Met. Soc. China, 2018, 28: 47–54. 10.1016/S1003-6326(18)64637-0
Falodun O.E. Obadele B.A. Oke S.R. Ige O. Olubambi P. Lethabane L. Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN Trans. Nonferrous Met. Soc. China 2018 28 47 54 10.1016/S1003-6326(18)64637-0
-
[9]
Shi, M., Liu, S., Wang, Q., Yang, X., Zhang, G., Preparation and properties of titanium obtained by spark plasma sintering of a Ti powder–fiber mixture, Materials, 2018, 11: 1–10. 10.3390/ma11122510
Shi M. Liu S. Wang Q. Yang X. Zhang G. Preparation and properties of titanium obtained by spark plasma sintering of a Ti powder–fiber mixture Materials 2018 11 1 10 10.3390/ma11122510
-
[10]
Cordeiro, M.J., Barão, V.A., Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?, Mater. Sci. Eng. C., 2017, 71: 1201–1215. 10.1016/j.msec.2016.10.025
Cordeiro M.J. Barão V.A. Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants? Mater. Sci. Eng. C. 2017 71 1201 1215 10.1016/j.msec.2016.10.025
-
[11]
Grandin, H.M., Berner, S., Dard, M., A review of titanium zirconium (tizr) alloys for use in endosseous dental implants, Materials, 2012;5: 1348–1360. 10.3390/ma5081348
Grandin H.M. Berner S. Dard M. A review of titanium zirconium (tizr) alloys for use in endosseous dental implants Materials 2012 5 1348 1360 10.3390/ma5081348
-
[12]
Medvedev, E., Molotnikov, A., Lapovok, R., Zeller, R., Berner, S., Habersetzer, P., et al., Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material, Mech. Behav. Biomed. Mater., 2016, 62: 384–398. 10.1016/j.jmbbm.2016.05.008
Medvedev E. Molotnikov A. Lapovok R. Zeller R. Berner S. Habersetzer P. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material Mech. Behav. Biomed. Mater. 2016 62 384 398 10.1016/j.jmbbm.2016.05.008
-
[13]
Basalah, A., Esmaeili, S., Toyserkani, E., On the influence of sintering protocols and layer thickness on the physical and mechanical properties of additive manufactured titanium porous bio-structures, Mater. Process. Technol., 2016, 238: 341–351. 10.1016/j.jmatprotec.2016.07.037
Basalah A. Esmaeili S. Toyserkani E. On the influence of sintering protocols and layer thickness on the physical and mechanical properties of additive manufactured titanium porous bio-structures Mater. Process. Technol. 2016 238 341 351 10.1016/j.jmatprotec.2016.07.037
-
[14]
Oh, I.H., Nomura, N., Masahashi, N., Hanada, S., Mechanical properties of porous titanium compacts prepared by powder sintering, Scr. Mater., 2003, 49: 1197–1202. 10.1016/j.scriptamat.2003.08.018
Oh I.H. Nomura N. Masahashi N. Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering Scr. Mater. 2003 49 1197 1202 10.1016/j.scriptamat.2003.08.018
-
[15]
Khushboo, K, Anju, T.R., Cintil, J.C., Amee, K., Strategic defenses: A review of novel approaches to combat nosocomial infections on medical implants, Int. J. Pharm., 2025, 681: 125827. 10.1016/j.ijpharm.2025.125827
Khushboo K Anju T.R. Cintil J.C. Amee K. Strategic defenses: A review of novel approaches to combat nosocomial infections on medical implants Int. J. Pharm. 2025 681 125827 10.1016/j.ijpharm.2025.125827
-
[16]
Lei, Z., Zhang, H., Zhang, E., You, J., Ma, X., Bai, X., Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching, Mater. Sci. Eng., 2018, 92: 121–131. 10.1016/j.msec.2018.06.024
Lei Z. Zhang H. Zhang E. You J. Ma X. Bai X. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching Mater. Sci. Eng. 2018 92 121 131 10.1016/j.msec.2018.06.024
-
[17]
Shi, Z., Neoh, K.G., Kang, E.T., Poh, C., Wang, W., Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions, Tissue Eng., 2009, 15: 417–426. 10.1089/ten.tea.2007.0415
Shi Z. Neoh K.G. Kang E.T. Poh C. Wang W. Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions Tissue Eng. 2009 15 417 426 10.1089/ten.tea.2007.0415
-
[18]
Hanawa, T., A comprehensive review of techniques for bio-functionalization of titanium, Periodontal Implant. Sci., 2011, 41: 263–272. 10.5051/jpis.2011.41.6.263
Hanawa T. A comprehensive review of techniques for bio-functionalization of titanium Periodontal Implant. Sci. 2011 41 263 272 10.5051/jpis.2011.41.6.263
-
[19]
Zhao, L., Chu, P.K., Zhang, Y., Wu Z., Antibacterial coatings on titanium implants, Biomed. Mater. Res. Part. B Appl. Biomater., 2009, 91: 470–480. 10.1002/jbm.b.31463
Zhao L. Chu P.K. Zhang Y. Wu Z. Antibacterial coatings on titanium implants Biomed. Mater. Res. Part. B Appl. Biomater. 2009 91 470 480 10.1002/jbm.b.31463
-
[20]
Ntrivala, M.A., Pitsavas, A.C., Lazaridou, K., Baziakou, Z., Karavasili, D., Papadimitriou, M., et al., Polycaprolactone (PCL): the biodegradable polyester shaping the future of materials – a review on synthesis, properties, biodegradation, applications and future perspectives, Eur. Polym. J., 2025, 234: 114033. 10.1016/j.eurpolymj.2025.114033
Ntrivala M.A. Pitsavas A.C. Lazaridou K. Baziakou Z. Karavasili D. Papadimitriou M. Polycaprolactone (PCL): the biodegradable polyester shaping the future of materials – a review on synthesis, properties, biodegradation, applications and future perspectives Eur. Polym. J. 2025 234 114033 10.1016/j.eurpolymj.2025.114033
-
[21]
Sharma, H., Pathak, M., Development of PCL/TiO2 composite as an efficient antibacterial, anticancer drug and biocompatible properties, Results Chem., 2024, 7: 101534. 10.1016/j.rechem.2024.101534
Sharma H. Pathak M. Development of PCL/TiO2 composite as an efficient antibacterial, anticancer drug and biocompatible properties Results Chem. 2024 7 101534 10.1016/j.rechem.2024.101534
-
[22]
Catauro, M., Papale, F., Bollino, F., Characterization and biological properties of TiO2/PCL hybrid layers prepared via sol–gel dip coating for surface modification of titanium implants, Non-Cryst Solids, 2015, 415: 9–15. 10.1016/j.jnoncrysol.2014.12.008
Catauro M. Papale F. Bollino F. Characterization and biological properties of TiO2/PCL hybrid layers prepared via sol–gel dip coating for surface modification of titanium implants Non-Cryst Solids 2015 415 9 15 10.1016/j.jnoncrysol.2014.12.008
-
[23]
De Santis, R., Catauro, M, Silvio, L.D., Manto, L., MG, Ambrosio, L., et al., Effects of polymer amount and processing conditions on the in vitro behaviour of hybrid titanium dioxide/polycaprolactone composites, Biomaterials, 2007, 28: 2801–2809. 10.1016/j.biomaterials.2007.02.014
De Santis R. Catauro M Silvio L.D. Manto L. Ambrosio MG L. Effects of polymer amount and processing conditions on the in vitro behaviour of hybrid titanium dioxide/polycaprolactone composites Biomaterials 2007 28 2801 2809 10.1016/j.biomaterials.2007.02.014
-
[24]
Chia, J.C., Lai, C.W., Juan, J.C., Kong, E.D.H., Teoh, M.W.Q., Kumar, A., et al., Recent development of copper, silver and their bimetallic nanoparticles: Next-generation antibacterial agents through photocatalysis activity, Water Process. Eng., 2025, 72: 107541. 10.1016/j.jwpe.2025.10754
Chia J.C. Lai C.W. Juan J.C. Kong E.D.H. Teoh M.W.Q. Kumar A. Recent development of copper, silver and their bimetallic nanoparticles: Next-generation antibacterial agents through photocatalysis activity Water Process. Eng. 2025 72 107541 10.1016/j.jwpe.2025.10754
-
[25]
Wang, X., Dong, H., Liu, J., In vivo antibacterial property of Ti-Cu sintered alloy implant, Mater. Sci. Eng. C., 2019, 100: 38–47. 10.1016/j.msec.2019.02.084
Wang X. Dong H. Liu J. In vivo antibacterial property of Ti-Cu sintered alloy implant Mater. Sci. Eng. C. 2019 100 38 47 10.1016/j.msec.2019.02.084
-
[26]
Tao, S.C., Xu, J.L., Yuan, L., Luo, J.M., Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti-3Cu alloys, Alloy. Compd., 2020, 812: 152142. 10.1016/j.jallcom.2019.152142
Tao S.C. Xu J.L. Yuan L. Luo J.M. Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti-3Cu alloys Alloy. Compd. 2020 812 152142 10.1016/j.jallcom.2019.152142
-
[27]
Feng, Y., Yang, F., Yuan, W., Hu, C., Chu, F., Wu, Y., et al., Lignin micro-nanospheres loaded with silver nanoparticles for excellent antibacterial activity, Int. J. Biol. Macromol., 2025, 319: 145374. 10.1016/j.ijbiomac.2025.145374
Feng Y. Yang F. Yuan W. Hu C. Chu F. Wu Y. Lignin micro-nanospheres loaded with silver nanoparticles for excellent antibacterial activity Int. J. Biol. Macromol. 2025 319 145374 10.1016/j.ijbiomac.2025.145374
-
[28]
Szaraniec, B., Goryczka, T., Structure and properties of Ti-Ag alloys produced by powder metallurgy, Alloy. Compd., 2017, 709: 464–472. 10.1016/j.jallcom.2017.03.155
Szaraniec B. Goryczka T. Structure and properties of Ti-Ag alloys produced by powder metallurgy Alloy. Compd. 2017 709 464 472 10.1016/j.jallcom.2017.03.155
-
[29]
Valenza, F., Artini, C., Passerone, A., Muolo, M.L., ZrB2–SiC/Ti6Al4V joints: wettability studies using Ag- and Cu-based braze alloys, Mater. Sci., 2012, 47: 8439–8449. 10.1007/s10853-012-6790-7
Valenza F. Artini C. Passerone A. Muolo M.L. ZrB2–SiC/Ti6Al4V joints: wettability studies using Ag- and Cu-based braze alloys Mater. Sci. 2012 47 8439 8449 10.1007/s10853-012-6790-7
-
[30]
Oh, K.T., Shim, H.M., Kim, K.N., Properties of titanium–silver alloys for dental application, Biomed. Mater. Res., 2005, 74: 649–658. 10.1002/jbm.b.30259
Oh K.T. Shim H.M. Kim K.N. Properties of titanium–silver alloys for dental application Biomed. Mater. Res. 2005 74 649 658 10.1002/jbm.b.30259
-
[31]
Kang, M.K., Moon, S.K., Kwon, J.S., Kim, K.M., Kim, K.N., Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti–Ag alloys, Mater. Res. Bull., 2012, 47: 2952–2955. 10.1016/j.materresbull.2012.04.060
Kang M.K. Moon S.K. Kwon J.S. Kim K.M. Kim K.N. Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti–Ag alloys Mater. Res. Bull. 2012 47 2952 2955 10.1016/j.materresbull.2012.04.060
-
[32]
Chen, M., Zhang, E., Zhang, L., Microstructure, mechanical properties, bio-corrosion properties and antibacterial property of Ti-Ag sintered alloys, Mater. Sci. Eng. C., 2016, 62: 350–360. 10.1016/j.msec.2016.01.081
Chen M. Zhang E. Zhang L. Microstructure, mechanical properties, bio-corrosion properties and antibacterial property of Ti-Ag sintered alloys Mater. Sci. Eng. C. 2016 62 350 360 10.1016/j.msec.2016.01.081
-
[33]
Shi, A., Zhu, C., Fu, S., Wang, R., Qin, G., Chen, D., et al., What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles?, Mater. Sci. Eng., 2020, 109: 110548. 10.1016/j.msec.2019.110548
Shi A. Zhu C. Fu S. Wang R. Qin G. Chen D. What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles? Mater. Sci. Eng. 2020 109 110548 10.1016/j.msec.2019.110548
-
[34]
Molitor, P., Barron, V., Young, T., Surface treatment of titanium for adhesive bonding to polymer composites: a review, Int. J. Adhes. Adhes., 2001, 21: 129–136. 10.1016/S0143-7496(00)00044-0
Molitor P. Barron V. Young T. Surface treatment of titanium for adhesive bonding to polymer composites: a review Int. J. Adhes. Adhes. 2001 21 129 136 10.1016/S0143-7496(00)00044-0
-
[35]
Han, M.K., Hwang, M.J., Won, D.H., Kim, Y.S., Song, H.J., Park, Y.J., Massive transformation in titanium-silver alloys and its effect on their mechanical properties and corrosion behavior, Materials, 2014, 7: 6194–6206. 10.3390/ma7096194
Han M.K. Hwang M.J. Won D.H. Kim Y.S. Song H.J. Park Y.J. Massive transformation in titanium-silver alloys and its effect on their mechanical properties and corrosion behavior Materials 2014 7 6194 6206 10.3390/ma7096194
-
[36]
Zambrano Carrullo, J.C., Dalmau Borrás, A., Amigó Borrás, V., Navarro-Laboulais, J., Pereira Falcón, J.C., Electrochemical corrosion behavior and mechanical properties of Ti–Ag biomedical alloys obtained by two powder metallurgy processing routes, Mech. Behav. Biomed. Mater., 2020, 112: 104063. 10.1016/j.jmbbm.2020.104063
Zambrano Carrullo J.C. Dalmau Borrás A. Amigó Borrás V. Navarro-Laboulais J. Pereira Falcón J.C. Electrochemical corrosion behavior and mechanical properties of Ti–Ag biomedical alloys obtained by two powder metallurgy processing routes Mech. Behav. Biomed. Mater. 2020 112 104063 10.1016/j.jmbbm.2020.104063
-
[37]
Fellah, B.H., Layrolle, P., Sol–gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity, Acta Biomater., 2009, 5: 735–742. 10.1016/j.actbio.2008.09.005
Fellah B.H. Layrolle P. Sol–gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity Acta Biomater. 2009 5 735 742 10.1016/j.actbio.2008.09.005
- Callister, W.D., Rethwisch, D.G., Materials science and engineering, an introduction. 9th ed., John Wiley and Sons Inc, New Jersey, USA, 2014. p. 196
- Yang, Y.F., Qian, M., Spark plasma sintering and hot pressing of titanium and titanium alloys, Titan. Powder Metall. Sci. Technol. Appl., 2015, 13: 219–235
-
[40]
Catauro, M., Bollino, F., Veronesi, P., Lamanna, G., Influence of PCL on mechanical properties and bioactivity of ZrO2-based hybrid coatings synthesized by sol–gel dip coating technique, Mater. Sci. Eng. C., 2014, 39: 344–351. 10.1016/j.msec.2014.03.025
Catauro M. Bollino F. Veronesi P. Lamanna G. Influence of PCL on mechanical properties and bioactivity of ZrO2-based hybrid coatings synthesized by sol–gel dip coating technique Mater. Sci. Eng. C. 2014 39 344 351 10.1016/j.msec.2014.03.025
-
[41]
Catauro, M., Bollino, F., Cristina Mozzati, M., Ferrara, C., Structure and magnetic properties of SiO2/PCL novel sol–gel organic–inorganic hybrid materials, J. Solid. State Chem., 2013, 203: 92–99. 10.1016/j.jssc.2013.04.014
Catauro M. Bollino F. Cristina Mozzati M. Ferrara C. Structure and magnetic properties of SiO2/PCL novel sol–gel organic–inorganic hybrid materials J. Solid. State Chem. 2013 203 92 99 10.1016/j.jssc.2013.04.014
- Griesser, H.J., Thin film coatings for biomaterials and biomedical applications. Woodhead Publishing Series in Biomaterials, Elsevier, Cambridge, United Kingdom, 2016
-
[43]
Al Khateeb, S., Bennett, B.T., Beck, J.P., Jeyapalina, S., Sparks, T.D., Exploration of fluorapatite bio-ceramic thin film deposition by ultrasonic spray pyrolysis, Mater. Res., 2023, 38: 2287–2301. 10.1557/s43578-023-00961-7
Al Khateeb S. Bennett B.T. Beck J.P. Jeyapalina S. Sparks T.D. Exploration of fluorapatite bio-ceramic thin film deposition by ultrasonic spray pyrolysis Mater. Res. 2023 38 2287 2301 10.1557/s43578-023-00961-7
-
[44]
Al Khateeb, S., Alley, M.J., Beck, J.P., Jeyapalina, S., Sparks, T.D., Crystallinity evolution of spray pyrolyzed fluorapatite thin films by post-deposition treatment, Thin Solid. Films, 2023, 784: 140082. 10.1016/j.tsf.2023.140082
Al Khateeb S. Alley M.J. Beck J.P. Jeyapalina S. Sparks T.D. Crystallinity evolution of spray pyrolyzed fluorapatite thin films by post-deposition treatment Thin Solid. Films 2023 784 140082 10.1016/j.tsf.2023.140082
-
[45]
Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., Dumas, P., FTIR study of polycaprolactone chain organization at interfaces, Colloid Interface Sci., 2004, 27: 381–387. 10.1016/j.jcis.2004.02.001
Elzein T. Nasser-Eddine M. Delaite C. Bistac S. Dumas P. FTIR study of polycaprolactone chain organization at interfaces Colloid Interface Sci. 2004 27 381 387 10.1016/j.jcis.2004.02.001
-
[46]
Rezaei, Y., Moztarzadeh, F., Shahabi, S., Tahriri, M.R., Synthesis, characterization, and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO-SrO bioactive glass, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2014, 14: 692–701. 10.1080/15533174.2013.783869
Rezaei Y. Moztarzadeh F. Shahabi S. Tahriri M.R. Synthesis, characterization, and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO-SrO bioactive glass Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2014 14 692 701 10.1080/15533174.2013.783869
-
[47]
Xie, F., He, X., Cao, S., Mei, M., Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications, Electrochim. Acta, 2013, 105: 121–129. 10.1016/j.electacta.2013.04.105
Xie F. He X. Cao S. Mei M. Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications Electrochim. Acta 2013 105 121 129 10.1016/j.electacta.2013.04.105
-
[48]
Zhang, Z., Yang, Y., Guo, Y., Xu, Z., Sha, P., Yu, Z., et al., The corrosion resistance and biomineralization of the DCPD-PCL coating on the surface of the additively manufactured NiTi alloy, Surf. Coat. Technol., 2023, 466: 129653. 10.1016/j.surfcoat.2023.129653
Zhang Z. Yang Y. Guo Y. Xu Z. Sha P. Yu Z. The corrosion resistance and biomineralization of the DCPD-PCL coating on the surface of the additively manufactured NiTi alloy Surf. Coat. Technol. 2023 466 129653 10.1016/j.surfcoat.2023.129653
-
[49]
Bagheri, A., Sedighi, M., Shamsi, M., Effect of PCL/HA nanocomposite coating on the degradation rate and mechanical integrity of mg/ha biocomposites during exposure in SBF, Arab. J. Sci. Eng., 2024, 49: 2077–2094. 10.1007/s13369-023-08134-8
Bagheri A. Sedighi M. Shamsi M. Effect of PCL/HA nanocomposite coating on the degradation rate and mechanical integrity of mg/ha biocomposites during exposure in SBF Arab. J. Sci. Eng. 2024 49 2077 2094 10.1007/s13369-023-08134-8