Have a personal or library account? Click to login
Porous titanium–silver dental implants fabricated via SPS: Poly-caprolactone coating and bioevaluation Cover

Porous titanium–silver dental implants fabricated via SPS: Poly-caprolactone coating and bioevaluation

Open Access
|Oct 2025

References

  1. Varanasi, V.G., Velten, M.F., Odatsu, T., Ilyas, A., Surface modifications and surface characterization of biomaterials used in bone healing, materials and devices for bone disorders, Academic Press, Massachusetts, USA, 2017, pp. 405–452
  2. [2] Karageorgiou, V., Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 2005, 26: 5474–5491. 10.1016/j.biomaterials.2005.02.002
    Karageorgiou V. Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis Biomaterials 2005 26 5474 5491 10.1016/j.biomaterials.2005.02.002
  3. [3] Arifin, A., Sulong, A.B., Muhamad, N., Syarif, J., Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review, Mater. Des., 2014, 55: 165–175. 10.1016/j.matdes.2013.09.045
    Arifin A. Sulong A.B. Muhamad N. Syarif J. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review Mater. Des. 2014 55 165 175 10.1016/j.matdes.2013.09.045
  4. [4] Kayabas, O., Yuzbasıoglu, E., Erzincanl, F., Static, dynamic and fatigue behaviors of dental implant using finite element method, Adv. Eng. Softw., 2006, 37: 649–658. 10.1016/j.advengsoft.2006.02.004
    Kayabas O. Yuzbasıoglu E. Erzincanl F. Static, dynamic and fatigue behaviors of dental implant using finite element method Adv. Eng. Softw. 2006 37 649 658 10.1016/j.advengsoft.2006.02.004
  5. [5] Wang, X., Wang, Y., Zhang, T., Liu, X., Flash joining of C/C composite with Ag-Cu-Ti filler by spark plasma sintering: The promoting and inhibiting effects on the interfacial reactions, Ceram. Int., 2025, 51: 10169–10173. 10.1016/j.ceramint.2024.12.447
    Wang X. Wang Y. Zhang T. Liu X. Flash joining of C/C composite with Ag-Cu-Ti filler by spark plasma sintering: The promoting and inhibiting effects on the interfacial reactions Ceram. Int. 2025 51 10169 10173 10.1016/j.ceramint.2024.12.447
  6. Ehsani, N., Abdulahi, A., Sintering of powder metallurgy parts using plasma arc (SPS), Iran. J. Man. Eng., 2012, 46: 35–43
  7. Ayodele, O.O., Shongwe, M.B., Obadele, B.A., Olubambi, P., Spark plasma sintering of materials: advances in processing and applications, Part VIII, Spark Plasma Sintering of Titanium-Based Materials, Spark Plasma Sintering of Materials, Springer Nature, Switzerland, 2019, pp. 673–701
  8. [8] Falodun, O.E., Obadele, B.A., Oke, S.R., Ige, O., Olubambi, P., Lethabane, L., et al., Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN, Trans. Nonferrous Met. Soc. China, 2018, 28: 47–54. 10.1016/S1003-6326(18)64637-0
    Falodun O.E. Obadele B.A. Oke S.R. Ige O. Olubambi P. Lethabane L. Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN Trans. Nonferrous Met. Soc. China 2018 28 47 54 10.1016/S1003-6326(18)64637-0
  9. [9] Shi, M., Liu, S., Wang, Q., Yang, X., Zhang, G., Preparation and properties of titanium obtained by spark plasma sintering of a Ti powder–fiber mixture, Materials, 2018, 11: 1–10. 10.3390/ma11122510
    Shi M. Liu S. Wang Q. Yang X. Zhang G. Preparation and properties of titanium obtained by spark plasma sintering of a Ti powder–fiber mixture Materials 2018 11 1 10 10.3390/ma11122510
  10. [10] Cordeiro, M.J., Barão, V.A., Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?, Mater. Sci. Eng. C., 2017, 71: 1201–1215. 10.1016/j.msec.2016.10.025
    Cordeiro M.J. Barão V.A. Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants? Mater. Sci. Eng. C. 2017 71 1201 1215 10.1016/j.msec.2016.10.025
  11. [11] Grandin, H.M., Berner, S., Dard, M., A review of titanium zirconium (tizr) alloys for use in endosseous dental implants, Materials, 2012;5: 1348–1360. 10.3390/ma5081348
    Grandin H.M. Berner S. Dard M. A review of titanium zirconium (tizr) alloys for use in endosseous dental implants Materials 2012 5 1348 1360 10.3390/ma5081348
  12. [12] Medvedev, E., Molotnikov, A., Lapovok, R., Zeller, R., Berner, S., Habersetzer, P., et al., Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material, Mech. Behav. Biomed. Mater., 2016, 62: 384–398. 10.1016/j.jmbbm.2016.05.008
    Medvedev E. Molotnikov A. Lapovok R. Zeller R. Berner S. Habersetzer P. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material Mech. Behav. Biomed. Mater. 2016 62 384 398 10.1016/j.jmbbm.2016.05.008
  13. [13] Basalah, A., Esmaeili, S., Toyserkani, E., On the influence of sintering protocols and layer thickness on the physical and mechanical properties of additive manufactured titanium porous bio-structures, Mater. Process. Technol., 2016, 238: 341–351. 10.1016/j.jmatprotec.2016.07.037
    Basalah A. Esmaeili S. Toyserkani E. On the influence of sintering protocols and layer thickness on the physical and mechanical properties of additive manufactured titanium porous bio-structures Mater. Process. Technol. 2016 238 341 351 10.1016/j.jmatprotec.2016.07.037
  14. [14] Oh, I.H., Nomura, N., Masahashi, N., Hanada, S., Mechanical properties of porous titanium compacts prepared by powder sintering, Scr. Mater., 2003, 49: 1197–1202. 10.1016/j.scriptamat.2003.08.018
    Oh I.H. Nomura N. Masahashi N. Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering Scr. Mater. 2003 49 1197 1202 10.1016/j.scriptamat.2003.08.018
  15. [15] Khushboo, K, Anju, T.R., Cintil, J.C., Amee, K., Strategic defenses: A review of novel approaches to combat nosocomial infections on medical implants, Int. J. Pharm., 2025, 681: 125827. 10.1016/j.ijpharm.2025.125827
    Khushboo K Anju T.R. Cintil J.C. Amee K. Strategic defenses: A review of novel approaches to combat nosocomial infections on medical implants Int. J. Pharm. 2025 681 125827 10.1016/j.ijpharm.2025.125827
  16. [16] Lei, Z., Zhang, H., Zhang, E., You, J., Ma, X., Bai, X., Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching, Mater. Sci. Eng., 2018, 92: 121–131. 10.1016/j.msec.2018.06.024
    Lei Z. Zhang H. Zhang E. You J. Ma X. Bai X. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching Mater. Sci. Eng. 2018 92 121 131 10.1016/j.msec.2018.06.024
  17. [17] Shi, Z., Neoh, K.G., Kang, E.T., Poh, C., Wang, W., Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions, Tissue Eng., 2009, 15: 417–426. 10.1089/ten.tea.2007.0415
    Shi Z. Neoh K.G. Kang E.T. Poh C. Wang W. Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions Tissue Eng. 2009 15 417 426 10.1089/ten.tea.2007.0415
  18. [18] Hanawa, T., A comprehensive review of techniques for bio-functionalization of titanium, Periodontal Implant. Sci., 2011, 41: 263–272. 10.5051/jpis.2011.41.6.263
    Hanawa T. A comprehensive review of techniques for bio-functionalization of titanium Periodontal Implant. Sci. 2011 41 263 272 10.5051/jpis.2011.41.6.263
  19. [19] Zhao, L., Chu, P.K., Zhang, Y., Wu Z., Antibacterial coatings on titanium implants, Biomed. Mater. Res. Part. B Appl. Biomater., 2009, 91: 470–480. 10.1002/jbm.b.31463
    Zhao L. Chu P.K. Zhang Y. Wu Z. Antibacterial coatings on titanium implants Biomed. Mater. Res. Part. B Appl. Biomater. 2009 91 470 480 10.1002/jbm.b.31463
  20. [20] Ntrivala, M.A., Pitsavas, A.C., Lazaridou, K., Baziakou, Z., Karavasili, D., Papadimitriou, M., et al., Polycaprolactone (PCL): the biodegradable polyester shaping the future of materials – a review on synthesis, properties, biodegradation, applications and future perspectives, Eur. Polym. J., 2025, 234: 114033. 10.1016/j.eurpolymj.2025.114033
    Ntrivala M.A. Pitsavas A.C. Lazaridou K. Baziakou Z. Karavasili D. Papadimitriou M. Polycaprolactone (PCL): the biodegradable polyester shaping the future of materials – a review on synthesis, properties, biodegradation, applications and future perspectives Eur. Polym. J. 2025 234 114033 10.1016/j.eurpolymj.2025.114033
  21. [21] Sharma, H., Pathak, M., Development of PCL/TiO2 composite as an efficient antibacterial, anticancer drug and biocompatible properties, Results Chem., 2024, 7: 101534. 10.1016/j.rechem.2024.101534
    Sharma H. Pathak M. Development of PCL/TiO2 composite as an efficient antibacterial, anticancer drug and biocompatible properties Results Chem. 2024 7 101534 10.1016/j.rechem.2024.101534
  22. [22] Catauro, M., Papale, F., Bollino, F., Characterization and biological properties of TiO2/PCL hybrid layers prepared via sol–gel dip coating for surface modification of titanium implants, Non-Cryst Solids, 2015, 415: 9–15. 10.1016/j.jnoncrysol.2014.12.008
    Catauro M. Papale F. Bollino F. Characterization and biological properties of TiO2/PCL hybrid layers prepared via sol–gel dip coating for surface modification of titanium implants Non-Cryst Solids 2015 415 9 15 10.1016/j.jnoncrysol.2014.12.008
  23. [23] De Santis, R., Catauro, M, Silvio, L.D., Manto, L., MG, Ambrosio, L., et al., Effects of polymer amount and processing conditions on the in vitro behaviour of hybrid titanium dioxide/polycaprolactone composites, Biomaterials, 2007, 28: 2801–2809. 10.1016/j.biomaterials.2007.02.014
    De Santis R. Catauro M Silvio L.D. Manto L. Ambrosio MG L. Effects of polymer amount and processing conditions on the in vitro behaviour of hybrid titanium dioxide/polycaprolactone composites Biomaterials 2007 28 2801 2809 10.1016/j.biomaterials.2007.02.014
  24. [24] Chia, J.C., Lai, C.W., Juan, J.C., Kong, E.D.H., Teoh, M.W.Q., Kumar, A., et al., Recent development of copper, silver and their bimetallic nanoparticles: Next-generation antibacterial agents through photocatalysis activity, Water Process. Eng., 2025, 72: 107541. 10.1016/j.jwpe.2025.10754
    Chia J.C. Lai C.W. Juan J.C. Kong E.D.H. Teoh M.W.Q. Kumar A. Recent development of copper, silver and their bimetallic nanoparticles: Next-generation antibacterial agents through photocatalysis activity Water Process. Eng. 2025 72 107541 10.1016/j.jwpe.2025.10754
  25. [25] Wang, X., Dong, H., Liu, J., In vivo antibacterial property of Ti-Cu sintered alloy implant, Mater. Sci. Eng. C., 2019, 100: 38–47. 10.1016/j.msec.2019.02.084
    Wang X. Dong H. Liu J. In vivo antibacterial property of Ti-Cu sintered alloy implant Mater. Sci. Eng. C. 2019 100 38 47 10.1016/j.msec.2019.02.084
  26. [26] Tao, S.C., Xu, J.L., Yuan, L., Luo, J.M., Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti-3Cu alloys, Alloy. Compd., 2020, 812: 152142. 10.1016/j.jallcom.2019.152142
    Tao S.C. Xu J.L. Yuan L. Luo J.M. Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti-3Cu alloys Alloy. Compd. 2020 812 152142 10.1016/j.jallcom.2019.152142
  27. [27] Feng, Y., Yang, F., Yuan, W., Hu, C., Chu, F., Wu, Y., et al., Lignin micro-nanospheres loaded with silver nanoparticles for excellent antibacterial activity, Int. J. Biol. Macromol., 2025, 319: 145374. 10.1016/j.ijbiomac.2025.145374
    Feng Y. Yang F. Yuan W. Hu C. Chu F. Wu Y. Lignin micro-nanospheres loaded with silver nanoparticles for excellent antibacterial activity Int. J. Biol. Macromol. 2025 319 145374 10.1016/j.ijbiomac.2025.145374
  28. [28] Szaraniec, B., Goryczka, T., Structure and properties of Ti-Ag alloys produced by powder metallurgy, Alloy. Compd., 2017, 709: 464–472. 10.1016/j.jallcom.2017.03.155
    Szaraniec B. Goryczka T. Structure and properties of Ti-Ag alloys produced by powder metallurgy Alloy. Compd. 2017 709 464 472 10.1016/j.jallcom.2017.03.155
  29. [29] Valenza, F., Artini, C., Passerone, A., Muolo, M.L., ZrB2–SiC/Ti6Al4V joints: wettability studies using Ag- and Cu-based braze alloys, Mater. Sci., 2012, 47: 8439–8449. 10.1007/s10853-012-6790-7
    Valenza F. Artini C. Passerone A. Muolo M.L. ZrB2–SiC/Ti6Al4V joints: wettability studies using Ag- and Cu-based braze alloys Mater. Sci. 2012 47 8439 8449 10.1007/s10853-012-6790-7
  30. [30] Oh, K.T., Shim, H.M., Kim, K.N., Properties of titanium–silver alloys for dental application, Biomed. Mater. Res., 2005, 74: 649–658. 10.1002/jbm.b.30259
    Oh K.T. Shim H.M. Kim K.N. Properties of titanium–silver alloys for dental application Biomed. Mater. Res. 2005 74 649 658 10.1002/jbm.b.30259
  31. [31] Kang, M.K., Moon, S.K., Kwon, J.S., Kim, K.M., Kim, K.N., Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti–Ag alloys, Mater. Res. Bull., 2012, 47: 2952–2955. 10.1016/j.materresbull.2012.04.060
    Kang M.K. Moon S.K. Kwon J.S. Kim K.M. Kim K.N. Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti–Ag alloys Mater. Res. Bull. 2012 47 2952 2955 10.1016/j.materresbull.2012.04.060
  32. [32] Chen, M., Zhang, E., Zhang, L., Microstructure, mechanical properties, bio-corrosion properties and antibacterial property of Ti-Ag sintered alloys, Mater. Sci. Eng. C., 2016, 62: 350–360. 10.1016/j.msec.2016.01.081
    Chen M. Zhang E. Zhang L. Microstructure, mechanical properties, bio-corrosion properties and antibacterial property of Ti-Ag sintered alloys Mater. Sci. Eng. C. 2016 62 350 360 10.1016/j.msec.2016.01.081
  33. [33] Shi, A., Zhu, C., Fu, S., Wang, R., Qin, G., Chen, D., et al., What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles?, Mater. Sci. Eng., 2020, 109: 110548. 10.1016/j.msec.2019.110548
    Shi A. Zhu C. Fu S. Wang R. Qin G. Chen D. What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles? Mater. Sci. Eng. 2020 109 110548 10.1016/j.msec.2019.110548
  34. [34] Molitor, P., Barron, V., Young, T., Surface treatment of titanium for adhesive bonding to polymer composites: a review, Int. J. Adhes. Adhes., 2001, 21: 129–136. 10.1016/S0143-7496(00)00044-0
    Molitor P. Barron V. Young T. Surface treatment of titanium for adhesive bonding to polymer composites: a review Int. J. Adhes. Adhes. 2001 21 129 136 10.1016/S0143-7496(00)00044-0
  35. [35] Han, M.K., Hwang, M.J., Won, D.H., Kim, Y.S., Song, H.J., Park, Y.J., Massive transformation in titanium-silver alloys and its effect on their mechanical properties and corrosion behavior, Materials, 2014, 7: 6194–6206. 10.3390/ma7096194
    Han M.K. Hwang M.J. Won D.H. Kim Y.S. Song H.J. Park Y.J. Massive transformation in titanium-silver alloys and its effect on their mechanical properties and corrosion behavior Materials 2014 7 6194 6206 10.3390/ma7096194
  36. [36] Zambrano Carrullo, J.C., Dalmau Borrás, A., Amigó Borrás, V., Navarro-Laboulais, J., Pereira Falcón, J.C., Electrochemical corrosion behavior and mechanical properties of Ti–Ag biomedical alloys obtained by two powder metallurgy processing routes, Mech. Behav. Biomed. Mater., 2020, 112: 104063. 10.1016/j.jmbbm.2020.104063
    Zambrano Carrullo J.C. Dalmau Borrás A. Amigó Borrás V. Navarro-Laboulais J. Pereira Falcón J.C. Electrochemical corrosion behavior and mechanical properties of Ti–Ag biomedical alloys obtained by two powder metallurgy processing routes Mech. Behav. Biomed. Mater. 2020 112 104063 10.1016/j.jmbbm.2020.104063
  37. [37] Fellah, B.H., Layrolle, P., Sol–gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity, Acta Biomater., 2009, 5: 735–742. 10.1016/j.actbio.2008.09.005
    Fellah B.H. Layrolle P. Sol–gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity Acta Biomater. 2009 5 735 742 10.1016/j.actbio.2008.09.005
  38. Callister, W.D., Rethwisch, D.G., Materials science and engineering, an introduction. 9th ed., John Wiley and Sons Inc, New Jersey, USA, 2014. p. 196
  39. Yang, Y.F., Qian, M., Spark plasma sintering and hot pressing of titanium and titanium alloys, Titan. Powder Metall. Sci. Technol. Appl., 2015, 13: 219–235
  40. [40] Catauro, M., Bollino, F., Veronesi, P., Lamanna, G., Influence of PCL on mechanical properties and bioactivity of ZrO2-based hybrid coatings synthesized by sol–gel dip coating technique, Mater. Sci. Eng. C., 2014, 39: 344–351. 10.1016/j.msec.2014.03.025
    Catauro M. Bollino F. Veronesi P. Lamanna G. Influence of PCL on mechanical properties and bioactivity of ZrO2-based hybrid coatings synthesized by sol–gel dip coating technique Mater. Sci. Eng. C. 2014 39 344 351 10.1016/j.msec.2014.03.025
  41. [41] Catauro, M., Bollino, F., Cristina Mozzati, M., Ferrara, C., Structure and magnetic properties of SiO2/PCL novel sol–gel organic–inorganic hybrid materials, J. Solid. State Chem., 2013, 203: 92–99. 10.1016/j.jssc.2013.04.014
    Catauro M. Bollino F. Cristina Mozzati M. Ferrara C. Structure and magnetic properties of SiO2/PCL novel sol–gel organic–inorganic hybrid materials J. Solid. State Chem. 2013 203 92 99 10.1016/j.jssc.2013.04.014
  42. Griesser, H.J., Thin film coatings for biomaterials and biomedical applications. Woodhead Publishing Series in Biomaterials, Elsevier, Cambridge, United Kingdom, 2016
  43. [43] Al Khateeb, S., Bennett, B.T., Beck, J.P., Jeyapalina, S., Sparks, T.D., Exploration of fluorapatite bio-ceramic thin film deposition by ultrasonic spray pyrolysis, Mater. Res., 2023, 38: 2287–2301. 10.1557/s43578-023-00961-7
    Al Khateeb S. Bennett B.T. Beck J.P. Jeyapalina S. Sparks T.D. Exploration of fluorapatite bio-ceramic thin film deposition by ultrasonic spray pyrolysis Mater. Res. 2023 38 2287 2301 10.1557/s43578-023-00961-7
  44. [44] Al Khateeb, S., Alley, M.J., Beck, J.P., Jeyapalina, S., Sparks, T.D., Crystallinity evolution of spray pyrolyzed fluorapatite thin films by post-deposition treatment, Thin Solid. Films, 2023, 784: 140082. 10.1016/j.tsf.2023.140082
    Al Khateeb S. Alley M.J. Beck J.P. Jeyapalina S. Sparks T.D. Crystallinity evolution of spray pyrolyzed fluorapatite thin films by post-deposition treatment Thin Solid. Films 2023 784 140082 10.1016/j.tsf.2023.140082
  45. [45] Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., Dumas, P., FTIR study of polycaprolactone chain organization at interfaces, Colloid Interface Sci., 2004, 27: 381–387. 10.1016/j.jcis.2004.02.001
    Elzein T. Nasser-Eddine M. Delaite C. Bistac S. Dumas P. FTIR study of polycaprolactone chain organization at interfaces Colloid Interface Sci. 2004 27 381 387 10.1016/j.jcis.2004.02.001
  46. [46] Rezaei, Y., Moztarzadeh, F., Shahabi, S., Tahriri, M.R., Synthesis, characterization, and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO-SrO bioactive glass, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2014, 14: 692–701. 10.1080/15533174.2013.783869
    Rezaei Y. Moztarzadeh F. Shahabi S. Tahriri M.R. Synthesis, characterization, and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO-SrO bioactive glass Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2014 14 692 701 10.1080/15533174.2013.783869
  47. [47] Xie, F., He, X., Cao, S., Mei, M., Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications, Electrochim. Acta, 2013, 105: 121–129. 10.1016/j.electacta.2013.04.105
    Xie F. He X. Cao S. Mei M. Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications Electrochim. Acta 2013 105 121 129 10.1016/j.electacta.2013.04.105
  48. [48] Zhang, Z., Yang, Y., Guo, Y., Xu, Z., Sha, P., Yu, Z., et al., The corrosion resistance and biomineralization of the DCPD-PCL coating on the surface of the additively manufactured NiTi alloy, Surf. Coat. Technol., 2023, 466: 129653. 10.1016/j.surfcoat.2023.129653
    Zhang Z. Yang Y. Guo Y. Xu Z. Sha P. Yu Z. The corrosion resistance and biomineralization of the DCPD-PCL coating on the surface of the additively manufactured NiTi alloy Surf. Coat. Technol. 2023 466 129653 10.1016/j.surfcoat.2023.129653
  49. [49] Bagheri, A., Sedighi, M., Shamsi, M., Effect of PCL/HA nanocomposite coating on the degradation rate and mechanical integrity of mg/ha biocomposites during exposure in SBF, Arab. J. Sci. Eng., 2024, 49: 2077–2094. 10.1007/s13369-023-08134-8
    Bagheri A. Sedighi M. Shamsi M. Effect of PCL/HA nanocomposite coating on the degradation rate and mechanical integrity of mg/ha biocomposites during exposure in SBF Arab. J. Sci. Eng. 2024 49 2077 2094 10.1007/s13369-023-08134-8
DOI: https://doi.org/10.2478/msp-2025-0030 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 85 - 105
Submitted on: May 8, 2025
|
Accepted on: Aug 26, 2025
|
Published on: Oct 3, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Golsa Mousavi, Bijan Eftekhari Yekta, Jafar Javadpour, Hassan Saghafian, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.