Have a personal or library account? Click to login
Pt/Al2O3/HfO2/Ti/TiN bi-layer RRAM device for imply–inhibit logic applications: Unveiling the resistive potential by experiment and simulation Cover

Pt/Al2O3/HfO2/Ti/TiN bi-layer RRAM device for imply–inhibit logic applications: Unveiling the resistive potential by experiment and simulation

Open Access
|Mar 2025

References

  1. [1] Tan, T., Du, Y., Cao, A., Sun, Y., Zhang, H., Zha, G., Resistive switching of the HfOX/HfO2 bi-layer heterostructure and its transmission characteristics as a synapse, RSC Adv., 2018, 8: 41884–41891. 10.1039/C8RA06230G
    Tan T. Du Y. Cao A. Sun Y. Zhang H. Zha G. Resistive switching of the HfOX/HfO2 bi-layer heterostructure and its transmission characteristics as a synapse RSC Adv. 2018 8 41884 41891 10.1039/C8RA06230G
  2. [2] Zahoor, F., Azni, T.Z., Zulkifli, Khanday, F.A., Resistive random access memory (RRAM): an overview of materials switching mechanism performance multilevel cell (MLC) storage modeling and applications, Nanoscale Res. Lett., 2020, 15: 90. 10.1186/s11671-020-03299-9
    Zahoor F. Azni T.Z. Zulkifli Khanday F.A. Resistive random access memory (RRAM): an overview of materials switching mechanism performance multilevel cell (MLC) storage modeling and applications Nanoscale Res. Lett. 2020 15 90 10.1186/s11671-020-03299-9
  3. [3] Ielmini, D., Resistive switching memories based on metal oxides: mechanisms reliability and scaling, Semicond. Sci. Technol., 2016, 31: 063002. 10.1088/0268-1242/31/6/063002
    Ielmini D. Resistive switching memories based on metal oxides: mechanisms reliability and scaling Semicond. Sci. Technol. 2016 31 063002 10.1088/0268-1242/31/6/063002
  4. [4] Huang, C.Y., Jieng, J.H., Jang, W.Y., Lin, C.H., Tseng, T.Y., Improved resistive switching characteristics by Al2O3 layers inclusion in HfO2-based RRAM devices, ECS Solid. State Lett., 2013, 2: P63. 10.1149/2.006308ssl
    Huang C.Y. Jieng J.H. Jang W.Y. Lin C.H. Tseng T.Y. Improved resistive switching characteristics by Al2O3 layers inclusion in HfO2-based RRAM devices ECS Solid. State Lett. 2013 2 P63 10.1149/2.006308ssl
  5. [5] Park, S., Cho, K., Jung, J., Kim, S., Annealing effect of Al2O3 tunnel barriers in HfO2-based ReRAM devices on nonlinear resistive switching characteristics, J. Nanosci. Nanotechnol., 2015, 15: 7569−7572. 10.1166/jnn.2015.11138
    Park S. Cho K. Jung J. Kim S. Annealing effect of Al2O3 tunnel barriers in HfO2-based ReRAM devices on nonlinear resistive switching characteristics J. Nanosci. Nanotechnol. 2015 15 7569 7572 10.1166/jnn.2015.11138
  6. [6] Ambrosi, E., Bricalli, A., Laudato, M., Ielmini, D., Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices, Faraday Discuss., 2019, 213: 87–98. 10.1039/C8FD00106E
    Ambrosi E. Bricalli A. Laudato M. Ielmini D. Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices Faraday Discuss. 2019 213 87 98 10.1039/C8FD00106E
  7. [7] Patel, Y.D., Treated HfO2 based RRAM devices with ru, tan, tin as top electrode for in-memory computing hardware, Master Thesis, New Jersey Institute of Technology, New Jersey, 2020, 1807. https://digitalcommons.njit.edu/theses/1807
    Patel Y.D. Treated HfO2 based RRAM devices with ru, tan, tin as top electrode for in-memory computing hardware Master Thesis New Jersey Institute of Technology, New Jersey 2020 1807 https://digitalcommons.njit.edu/theses/1807
  8. [8] Arun, N., Nageswara Rao, S.V.S., Pathak, A.P., Effects of bottom electrode materials on the resistive switching characteristics of HfO2-based RRAM devices, J. Electron. Mater., 2013, 52: 1541–1551. 10.1007/s11664-022-10136-5
    Arun N. Nageswara Rao S.V.S. Pathak A.P. Effects of bottom electrode materials on the resistive switching characteristics of HfO2-based RRAM devices J. Electron. Mater. 2013 52 1541 1551 10.1007/s11664-022-10136-5
  9. [9] Wright, J.T., Carbaugh, D.J., Haggerty, M.E., Richard, A.L., Ingram, D.C., Kaya, S., et al., Thermal oxidation of silicon in a residual oxygen atmosphere the RESOX process for self-limiting growth of thin silicon dioxide films, Semicond. Sci. Technol., 2016, 31: 105007 10.1088/0268-1242/31/10/105007
    Wright J.T. Carbaugh D.J. Haggerty M.E. Richard A.L. Ingram D.C. Kaya S. Thermal oxidation of silicon in a residual oxygen atmosphere the RESOX process for self-limiting growth of thin silicon dioxide films Semicond. Sci. Technol. 2016 31 105007 10.1088/0268-1242/31/10/105007
  10. [10] Aarik, L., Piller, C.T., Raud, J., Talviste, R., Jõgi, I., Aarik, J., Atomic layer deposition of α-Al2O3 from trimethylaluminum and H2O: Effect of process parameters and plasma excitation on structure development, J. Cryst., 2023, 609: 127148. 10.1016/j.jcrysgro.2023.12714
    Aarik L. Piller C.T. Raud J. Talviste R. Jõgi I. Aarik J. Atomic layer deposition of α-Al2O3 from trimethylaluminum and H2O: Effect of process parameters and plasma excitation on structure development J. Cryst. 2023 609 127148 10.1016/j.jcrysgro.2023.12714
  11. [11] Fang, Y., Improvement of HfOx-based RRAM device variation by inserting ALD TiN buffer layer, IEEE Electron. Device Lett., 2018, 39: 819–822. 10.1109/LED.2018.2831698
    Fang Y. Improvement of HfOx-based RRAM device variation by inserting ALD TiN buffer layer IEEE Electron. Device Lett. 2018 39 819 822 10.1109/LED.2018.2831698
  12. [12] Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A., Stewart, D.R., Williams, R.S., Memristive switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotech., 2008, 3: 429–433. 10.1038/nnano.2008.160
    Yang J.J. Pickett M.D. Li X. Ohlberg D.A. Stewart D.R. Williams R.S. Memristive switching mechanism for metal/oxide/metal nanodevices Nat. Nanotech. 2008 3 429 433 10.1038/nnano.2008.160
  13. [13] Kvatinsky, S., Ramadan, M., Friedman, E.G., Kolodny, A., VTEAM: A general model for voltage-controlled memristors, IEEE Trans. Circuits Syst. II: Express Briefs., 2015, 62: 786–790. 10.1109/TCSII.2015.2433536
    Kvatinsky S. Ramadan M. Friedman E.G. Kolodny A. VTEAM: A general model for voltage-controlled memristors IEEE Trans. Circuits Syst. II: Express Briefs 2015 62 786 790 10.1109/TCSII.2015.2433536
  14. [14] Bhullar, B.S., Gangacharyulu, D., Das, S.K., Temporal deterioration in thermal performance of screen mesh wick straight heat pipe using surfactant free aqueous nanofluids, Heat. Mass. Transf., 2017, 53: 241–251 10.1007/s00231-016-1785-6
    Bhullar B.S. Gangacharyulu D. Das S.K. Temporal deterioration in thermal performance of screen mesh wick straight heat pipe using surfactant free aqueous nanofluids Heat. Mass. Transf 2017 53 241 251 10.1007/s00231-016-1785-6
  15. [15] Kondaiah, P., Shaik, H., Mohan Rao, G., Studies on RF magnetron sputtered HfO2 thin films for microelectronic applications, Electron. Mater. Lett., 2015, 11: 592–600. 10.1007/s13391-015-4490-6
    Kondaiah P. Shaik H. Mohan Rao G. Studies on RF magnetron sputtered HfO2 thin films for microelectronic applications Electron. Mater. Lett. 2015 11 592 600 10.1007/s13391-015-4490-6
  16. [16] Wang, G., Qian, X., Cao, Y.Q., Cao, Z.Y., Fang, G.Y., Li, A.D., et al., Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications, Nanoscale Res. Lett., 2015, 10: 135. 10.1186/s11671-015-0846-y
    Wang G. Qian X. Cao Y.Q. Cao Z.Y. Fang G.Y. Li A.D. Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications Nanoscale Res. Lett 2015 10 135 10.1186/s11671-015-0846-y
  17. [17] Athena, F.F., West, M.P., Hah, J., Hanus, R., Graham, S., Vogel, E.M., Towards a better understanding of the forming and resistive switching behavior of Ti-doped HfOx RRAM, J. Mater. Chem. C., 2022, 10: 5896. 10.1039/D1TC04734E
    Athena F.F. West M.P. Hah J. Hanus R. Graham S. Vogel E.M. Towards a better understanding of the forming and resistive switching behavior of Ti-doped HfOx RRAM J. Mater. Chem. C. 2022 10 5896 10.1039/D1TC04734E
  18. [18] Napolean, A., Sivamangai, N.M., Naveen Kumar, R., Nithya, N., Electroforming atmospheric temperature and annealing effects on Pt/HfO2/TiO2/HfO2/Pt resistive random access memory cell, Silicon, 2022, 14: 2863. 10.1007/s12633-021-01074-8
    Napolean A. Sivamangai N.M. Naveen Kumar R. Nithya N. Electroforming atmospheric temperature and annealing effects on Pt/HfO2/TiO2/HfO2/Pt resistive random access memory cell Silicon 2022 14 2863 10.1007/s12633-021-01074-8
  19. [19] Su, B., Cai, J., Zhang, Y., Wang, Y., Wang, S., et al., A 1T2M memristor-based logic circuit and its applications, Microelectron. J., 2023, 132: 105674. 10.1016/j.mejo.2022.105674
    Su B. Cai J. Zhang Y. Wang Y. Wang S. A 1T2M memristor-based logic circuit and its applications Microelectron. J. 2023 132 105674 10.1016/j.mejo.2022.105674
  20. [20] Xiaojuan, L., Chuanyang, S., Zeheng, T., Realization of complete boolean logic and combinational logic functionalities on a memristor-based universal logic circuit, Chin. J. Electron., 2024, 33: 1–10. 10.23919/cje.2023.00.091
    Xiaojuan L. Chuanyang S. Zeheng T. Realization of complete boolean logic and combinational logic functionalities on a memristor-based universal logic circuit Chin. J. Electron. 2024 33 1 10 10.23919/cje.2023.00.091
  21. [21] Singh, T., Hybrid Memristor-CMOS (MeMOS) based logic gates and adder circuits, arXiv [cs.ET], 2015, 1506, 1–11. 10.48550/arXiv.1506.06735
    Singh T. Hybrid Memristor-CMOS (MeMOS) based logic gates and adder circuits arXiv [cs.ET] 2015 1506 1 11 10.48550/arXiv.1506.06735
  22. [22] Mandal, S., Sinha, J., Chakraborty, A., Design of Memristor – CMOS based logic gates and logic circuits. In 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), Shillong, India, 2019, pp. 215–220. 10.1109/IESPC.2019.8902355
    Mandal S. Sinha J. Chakraborty A. Design of Memristor – CMOS based logic gates and logic circuits In 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC) Shillong, India 2019 pp. 215 220 10.1109/IESPC.2019.8902355
  23. [23] Kvatinsky, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C., Memristor-based material implication (IMPLY) logic: Design principles and methodologies, IEEE Trans. VLSI Syst., 2014, 22: 2054–2066. 10.1109/TVLSI.2013.2282132
    Kvatinsky S. Satat G. Wald N. Friedman E.G. Kolodny A. Weiser U.C. Memristor-based material implication (IMPLY) logic: Design principles and methodologies IEEE Trans. VLSI Syst. 2014 22 2054 2066 10.1109/TVLSI.2013.2282132
  24. [24] Mane, P.S., Paul, N., Behera, N., Sampath, M., Ramesha, C.K., Hybrid CMOS - Memristor based configurable logic block design. In International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 2014, pp. 1–5. 10.1109/ECS.2014.6892532
    Mane P.S. Paul N. Behera N. Sampath M. Ramesha C.K. Hybrid CMOS - Memristor based configurable logic block design In International Conference on Electronics and Communication Systems (ICECS) Coimbatore, India 2014 pp. 1 5 10.1109/ECS.2014.6892532
  25. [25] Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U.C., Friedman, E.G., MRL:, Memristor ratioed logic. In Proc. Int. Workshop on Cellular Nanoscale Network and Application, Turin, Italy, 2012, pp. 1–6. 10.1109/CNNA.2012.6331426
    Kvatinsky S. Wald N. Satat G. Kolodny A. Weiser U.C. Friedman E.G. MRL:, Memristor ratioed logic In Proc. Int. Workshop on Cellular Nanoscale Network and Application Turin, Italy 2012 pp. 1 6 10.1109/CNNA.2012.6331426
  26. [26] Hoffer, B., Rana, V., Menzel, S., Waser, R., Kvatinsky, S., Experimental demonstration of memristor-aided logic (MAGIC) using valence change memory (VCM), IEEE Trans. Electron. Devices, 2020, 67: 3115–3122. 10.1109/TED.2020.3001247
    Hoffer B. Rana V. Menzel S. Waser R. Kvatinsky S. Experimental demonstration of memristor-aided logic (MAGIC) using valence change memory (VCM) IEEE Trans. Electron. Devices 2020 67 3115 3122 10.1109/TED.2020.3001247
  27. [27] Ligang, G., Alibart, F., Strukov, D.B., Programmable CMOS/memristor threshold logic, IEEE Trans. Nanotechnol., 2013, 12: 115–119. 10.1109/TNANO.2013.2241075
    Ligang G. Alibart F. Strukov D.B. Programmable CMOS/memristor threshold logic IEEE Trans. Nanotechnol. 2013 12 115 119 10.1109/TNANO.2013.2241075
  28. [28] Vourkasand, I., Sirakoulis, G.C., Memristor–based combinational circuits: A design methodology for encoders/decoders. Microelectron. J., 2014, 45: 59–70. 10.1016/j.mejo.2013.10.001
    Vourkasand I. Sirakoulis G.C. Memristor–based combinational circuits: A design methodology for encoders/decoders Microelectron. J. 2014 45 59 70 10.1016/j.mejo.2013.10.001
DOI: https://doi.org/10.2478/msp-2025-0016 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 196 - 209
Submitted on: Feb 5, 2025
Accepted on: May 25, 2025
Published on: Mar 31, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Nithya Natarajan, Paramasivam Kuppusamy, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.