References
- Ru, X., Gu, N., Shang, H., Zhang, H. (2022). MEMS inertial sensor calibration technology: Current status and future trends. Micromachines, 13 (6), 879.
https://doi.org/10.3390/mi13060879 - Niu, W., Fang, L., Xu, L., Li, X., Huo, R., Guo, D., Qi, Z. (2018). Summary of research status and application of MEMS accelerometers. Journal of Computer and Communications, 6 (12), 215–221.
https://doi.org/10.4236/jcc.2018.612021 - Hou, Z., Kuang, Y., Ou, F., Xu, Q., Miao, T., Xiao, D., Wu, X. (2021). A quadrature compensation method to improve the performance of the butterfly vibratory gyroscope. Sensors and Actuators A: Physical, 319, 112527.
https://doi.org/10.1016/j.sna.2020.112527 - Wang, P., Yang, Y., Chen, M., Zhang, C., Wang, N., Yang, F., Peng, C., Han, J., Dai, Y. (2023). Design of a biaxial high-G piezoresistive accelerometer with a tension–compression structure. Micromachines, 14 (8), 1492.
https://doi.org/10.3390/mi14081492 - Caspani, A., Comi, C., Corigliano, A., Langfelder, G., Tocchio, A. (2013). Compact biaxial micromachined resonant accelerometer. Journal of Micromechanics and Microengineering, 23 (10), 105012.
http://dx.doi.org/10.1088/0960-1317/23/10/105012 - Zhao, L., Dai, B., Yang, B. (2016). Design and simulations of a new biaxial silicon resonant micro-accelerometer. Microsystem Technologies, 22, 2829–2834.
https://doi.org/10.1007/s00542-015-2636-y - Shan, X., Angeles, J., Forbes, J. R. (2018). Design of a biaxial high frequency-ratio low-g MEMS accelerometer. Microsystem Technologies, 24, 3851–3861.
https://doi.org/10.1007/s00542-018-3862-x - Galimberti, C., Gattere, G., Riani, M., Zega, V. (2023). A new design strategy for innovative MEMS xz-biaxial accelerometers. IEEE Sensors Letters, 7 (10), 2503504.
https://doi.org/10.1109/LSENS.2023.3310364 - Yang, B., Zhao, H., Dai, B., Liu, X. (2015). A new silicon biaxial decoupled resonant micro-accelerometer. Microsystem Technologies, 21, 109–115.
https://doi.org/10.1007/s00542-014-2097-8 - Wang, W., Yan, Z., Zhang, J., Lu, J., Qin, H., Ni, Z. (2018). High-performance position-sensitive detector based on graphene–silicon heterojunction. Optica, 5 (1), 27–31.
https://doi.org/10.1364/OPTICA.5.000027 - Abhulimen, I. U., Kamto, A., Liu, Y., Burkett, S. L., Schaper, L. (2008). Fabrication and testing of through-silicon vias used in three-dimensional integration. Journal of Vacuum Science & Technology B, 26 (6), 1834–1840.
https://doi.org/10.1116/1.2993174 - Shan, X., Angeles, J., Forbes, J. R. (2019). Design, fabrication, and testing of a monolithic biaxial architecture for MEMS accelerometers. Technical Report TR-CIM-2019-15-10-01, McGill University, Montreal, Canada.
- Le, X. L., Kim, K., Chao, S.-H. (2022). Analysis of temperature stability and change of resonant frequency of a capacitive MEMS accelerometer. International Journal of Precision Engineering and Manufacturing, 23, 347–359.
https://doi.org/10.1007/s12541-021-00602-1 - Comi, C., Corigliano, A., Langfelder, G., Zega, V., Zerbini, S. (2016) Sensitivity and temperature behavior of a novel z-axis differential resonant micro accelerometer. Journal of Micromechanics and Microengineering, 26, 035006.
http://dx.doi.org/10.1088/0960-1317/26/3/035006 - Shin, S., Kwon, H.-K., Vukasin, G. D., Kenny, T. W., Ayazi, F. (2021). A temperature compensated biaxial eFM accelerometer in Epi-seal process. Sensors and Actuators A: Physical, 330, 112860.
https://doi.org/10.1016/j.sna.2021.112860 - Ding, H., Zhao, J., Ju, B.-F., Xie, J. (2015). A high-sensitivity biaxial resonant accelerometer with two-stage microleverage mechanisms. Journal of Micromechanics and Microengineering, 26, 015011.
http://dx.doi.org/10.1088/0960-1317/26/1/015011 - Cai, P., Xiong, X., Wang, K., Wang, J., Zou, X. (2021). An improved difference temperature compensation method for MEMS resonant accelerometers. Micromachines, 12 (9), 1022.
https://doi.org/10.3390/mi12091022 - Xue, H., Chen, G. (2024). Design of accelerometer data sampling circuit and research on temperature compensation technology. Navigation and Control, 23 (1), 73–86.
- Mao, Z., Zhang, H., Yang, Z. (2024). The temperature self-compensation method for quartz pendulum acceleration sensors. Instrument Technique and Sensor, 7, 6.
- Liu, G., Liu, Y., Li, Z., Ma, Z., Ma, X., Wang, X., Zheng, X., Jin, Z. (2023). Combined temperature compensation method for closed-loop microelectromechanical system capacitive accelerometer. Micromachines, 14 (8), 1623.
https://doi.org/10.3390/mi14081623