Have a personal or library account? Click to login
A Nested DUAL-axis Accelerometer with Enhanced Temperature Robustness for Testing Across the Entire Operational Temperature Range Cover

A Nested DUAL-axis Accelerometer with Enhanced Temperature Robustness for Testing Across the Entire Operational Temperature Range

Open Access
|Nov 2025

References

  1. Ru, X., Gu, N., Shang, H., Zhang, H. (2022). MEMS inertial sensor calibration technology: Current status and future trends. Micromachines, 13 (6), 879. https://doi.org/10.3390/mi13060879
  2. Niu, W., Fang, L., Xu, L., Li, X., Huo, R., Guo, D., Qi, Z. (2018). Summary of research status and application of MEMS accelerometers. Journal of Computer and Communications, 6 (12), 215–221. https://doi.org/10.4236/jcc.2018.612021
  3. Hou, Z., Kuang, Y., Ou, F., Xu, Q., Miao, T., Xiao, D., Wu, X. (2021). A quadrature compensation method to improve the performance of the butterfly vibratory gyroscope. Sensors and Actuators A: Physical, 319, 112527. https://doi.org/10.1016/j.sna.2020.112527
  4. Wang, P., Yang, Y., Chen, M., Zhang, C., Wang, N., Yang, F., Peng, C., Han, J., Dai, Y. (2023). Design of a biaxial high-G piezoresistive accelerometer with a tension–compression structure. Micromachines, 14 (8), 1492. https://doi.org/10.3390/mi14081492
  5. Caspani, A., Comi, C., Corigliano, A., Langfelder, G., Tocchio, A. (2013). Compact biaxial micromachined resonant accelerometer. Journal of Micromechanics and Microengineering, 23 (10), 105012. http://dx.doi.org/10.1088/0960-1317/23/10/105012
  6. Zhao, L., Dai, B., Yang, B. (2016). Design and simulations of a new biaxial silicon resonant micro-accelerometer. Microsystem Technologies, 22, 2829–2834. https://doi.org/10.1007/s00542-015-2636-y
  7. Shan, X., Angeles, J., Forbes, J. R. (2018). Design of a biaxial high frequency-ratio low-g MEMS accelerometer. Microsystem Technologies, 24, 3851–3861. https://doi.org/10.1007/s00542-018-3862-x
  8. Galimberti, C., Gattere, G., Riani, M., Zega, V. (2023). A new design strategy for innovative MEMS xz-biaxial accelerometers. IEEE Sensors Letters, 7 (10), 2503504. https://doi.org/10.1109/LSENS.2023.3310364
  9. Yang, B., Zhao, H., Dai, B., Liu, X. (2015). A new silicon biaxial decoupled resonant micro-accelerometer. Microsystem Technologies, 21, 109–115. https://doi.org/10.1007/s00542-014-2097-8
  10. Wang, W., Yan, Z., Zhang, J., Lu, J., Qin, H., Ni, Z. (2018). High-performance position-sensitive detector based on graphene–silicon heterojunction. Optica, 5 (1), 27–31. https://doi.org/10.1364/OPTICA.5.000027
  11. Abhulimen, I. U., Kamto, A., Liu, Y., Burkett, S. L., Schaper, L. (2008). Fabrication and testing of through-silicon vias used in three-dimensional integration. Journal of Vacuum Science & Technology B, 26 (6), 1834–1840. https://doi.org/10.1116/1.2993174
  12. Shan, X., Angeles, J., Forbes, J. R. (2019). Design, fabrication, and testing of a monolithic biaxial architecture for MEMS accelerometers. Technical Report TR-CIM-2019-15-10-01, McGill University, Montreal, Canada.
  13. Le, X. L., Kim, K., Chao, S.-H. (2022). Analysis of temperature stability and change of resonant frequency of a capacitive MEMS accelerometer. International Journal of Precision Engineering and Manufacturing, 23, 347–359. https://doi.org/10.1007/s12541-021-00602-1
  14. Comi, C., Corigliano, A., Langfelder, G., Zega, V., Zerbini, S. (2016) Sensitivity and temperature behavior of a novel z-axis differential resonant micro accelerometer. Journal of Micromechanics and Microengineering, 26, 035006. http://dx.doi.org/10.1088/0960-1317/26/3/035006
  15. Shin, S., Kwon, H.-K., Vukasin, G. D., Kenny, T. W., Ayazi, F. (2021). A temperature compensated biaxial eFM accelerometer in Epi-seal process. Sensors and Actuators A: Physical, 330, 112860. https://doi.org/10.1016/j.sna.2021.112860
  16. Ding, H., Zhao, J., Ju, B.-F., Xie, J. (2015). A high-sensitivity biaxial resonant accelerometer with two-stage microleverage mechanisms. Journal of Micromechanics and Microengineering, 26, 015011. http://dx.doi.org/10.1088/0960-1317/26/1/015011
  17. Cai, P., Xiong, X., Wang, K., Wang, J., Zou, X. (2021). An improved difference temperature compensation method for MEMS resonant accelerometers. Micromachines, 12 (9), 1022. https://doi.org/10.3390/mi12091022
  18. Xue, H., Chen, G. (2024). Design of accelerometer data sampling circuit and research on temperature compensation technology. Navigation and Control, 23 (1), 73–86.
  19. Mao, Z., Zhang, H., Yang, Z. (2024). The temperature self-compensation method for quartz pendulum acceleration sensors. Instrument Technique and Sensor, 7, 6.
  20. Liu, G., Liu, Y., Li, Z., Ma, Z., Ma, X., Wang, X., Zheng, X., Jin, Z. (2023). Combined temperature compensation method for closed-loop microelectromechanical system capacitive accelerometer. Micromachines, 14 (8), 1623. https://doi.org/10.3390/mi14081623
Language: English
Page range: 321 - 326
Submitted on: May 21, 2025
Accepted on: Sep 18, 2025
Published on: Nov 13, 2025
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Yanchao Ren, Guodong Duan, Jingjing Jiao, Xiaoping Hu, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Volume 25 (2025): Issue 6 (December 2025)