Have a personal or library account? Click to login
Predicting the relationship between consumer buying behavior (CBB) and consumption metaphor (CM) through machine learning (ML) Cover

Predicting the relationship between consumer buying behavior (CBB) and consumption metaphor (CM) through machine learning (ML)

Open Access
|Mar 2025

References

  1. Allison, C. K., Drews, D. R., & Probst, J. R. (2000). Behavioral and self-concept differences in tattooed and nontattooed college students. Psychological Reports, 86(2), 475–481.
  2. Alshehri, M., Alamri, A., Cristea, A. I., & Stewart, C. D. (2021). Towards designing profitable courses: Predicting student purchasing behaviour in MOOCs. International Journal of Artificial Intelligence in Education, 31, 215–233.
  3. Ayyıldız, H., & Tuncer, S. A. (2020). Determination of the effect of red blood cell parameters in the discrimination of iron deficiency anemia and beta thalassemia via neighborhood component analysis feature selection-based machine learning. Chemometrics and Intelligent Laboratory Systems, 196, 103886.
  4. Barry, A., Born, G., & Weszkalnys, G. (2008). Logics of interdisciplinarity. Economy and Society, 37(1), 20–49.
  5. Bartlett, M. S. (1950). Test of significance in factor analysis. British Journal of Psychology, Statistical Section, 3, 77–85.
  6. Belch, G. E., & Belch, M. A. (1998). Advertising and promotion: An integrated marketing and communications perspective. Irwin/McGraw-Hill.
  7. Bergmann, M., Brohmann, B., Hoffmann, E., Loibl, M. C., Rehaag, R., Schramm, E., & Voß, J. P. (2005). Quality criteria of transdisciplinary research: A guide for the for-mative evaluation of research projects. Institute for Social-Ecological Research (ISOE).
  8. Burnkrant, R. E., & Cousineau, A. (1975). Informational and normative social influence in buyer Behavior. Journal of Consumer Research, 2(3), 206–215.
  9. Canepa, G. A. (2016). What you need to know about machine learning. Packt Publishing.
  10. Chaudhuri, N., Gupta, G., Vamsi, V., & Bose, I. (2021). On the platform but will they buy? Predicting customers’ purchase behavior using deep learning. Decision Support Systems, 149, 113622.
  11. Chelminski, P., & Ekin, A. C. (2007). Ethnographic research in marketing: Methods and implications. In C. Can Aktan & Sabah Balta (Eds.), Third International Conference on Business, Management and Economics, Selected Proceedings - Perspectives on Business and Management (Vol. 2, pp. 1–10).
  12. Chen, S. X., Wang, X. K., Zhang, H. Y., Wang, J. Q., & Peng, J. J. (2021). Customer purchase forecasting for online tourism: A data-driven method with multiplex behavior data. Tourism Management, 87, 104357.
  13. Chiu, C. (2002). A case-based customer classification approach for direct marketing. Expert Systems with Applications, 22(2), 163–168.
  14. Coulter, R. A., Zaltman, G., & Coulter, K. S. (2001). Interpreting consumer perceptions of advertising: An application of the zaltman metaphor elicitation technique. Journal of Advertising, 30(4), 1–21.
  15. Cvetkovska, L. (2021). 27 Tattoo statistics to intrigue, impress and even encourage. https://moderngentlemen.net/tattoo-statistics.
  16. Dai, P., & Weld, D. S. (2010). Decision-theoretic control of crowd-sourced workflows. In Twenty-Fourth AAAI Conference on Artificial Intelligence.
  17. Ding, Y., DeSarbo, W. S., Hanssens, D. M., Jedidi, K., Lynch, J. G., & Lehmann, D. R. (2020). The past, present, and future of measurement and methods in marketing analysis. Marketing Letters, 31, 175–186. doi: 10.1007/s11002-020-09527-7.
  18. Duchessi, P. (1993). A research perspective: Artificial intelligence, management and organizations. intelligent systems in accounting. Finance and Management, 2, 151–159.
  19. Engel, J. F., Blackwell, R. D., & Miniard, P. W. (1995). Consumer behavior. Dryden Press.
  20. Fishbein, M., & Ajzen, I. (2010). Predicting and changing behavior: A reasoned action approach. Taylor and Francis.
  21. Fix, E., & Hodges, J. L. (1951). Discriminatory analysis. Nonparametric discrimination: Consistency properties. International Statistical Review/Revue Internationale de Statistique, 57(3), 238–247.
  22. Florez-Lopez, R., & Ramon-Jeronimo, J. M. (2009). Marketing segmentation through machine learning models: An approach based on customer relationship management and customer profitability accounting. Social Science Computer Review, 27(1), 96–117.
  23. Forceville, C. (1994). Pictorial metaphor in advertisements. Metaphor and Symbolic Activity, 9(1), 1–29.
  24. Goldberger, J., Hinton, G. E., Roweis, S., & Salakhutdinov, R. R. (2004). Neighbourhood components analysis. Advances in Neural Information Processing Systems, 17, 513–520.
  25. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.
  26. Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (Eds.). (2008). Feature extraction: Foundations and applications (Vol. 207). Springer.
  27. Hagen, L., Uetake, K., Yang, N., Bollinger, B., Chaney, A. J., Dzyabura, D., Etkin, J., Goldfarb, A., Liu, L., Sudhir, K., & Wang, Y. (2020). How can machine learning aid behavioral marketing research? Marketing Letters, 31, 361–370. doi: 10.1007/s11002-020-09535-7.
  28. Hair, J. F., & Sarstedt, M. (2021). Data, measurement, and causal inferences in machine learning: Opportunities and challenges for marketing. Journal of Marketing Theory and Practice, 29(1), 65–77. doi: 10.1080/10696679.2020.1860683.
  29. Harris Interactive. (2008). Three in ten Americans with a tattoo say having one makes them feel sexier. https://theharrispoll.com/wp-content/uploads/2017/12/Harris-Interactive-Poll-Research-Three-in-Ten-Americans-with-a-Tattoo-Say-Having-One-Makes-Them-Feel-Sexier-2008-02.pdf [03.10.2021].
  30. Haupt, J. S. (2020). Machine learning for marketing decision support. (Doctoral thesis). School of Business and Economics. Humboldt-Universität zu Berlin.
  31. Hebden, L., King, L., & Kelly, B. (2011). Art of persuasion: An analysis of techniques used to market foods to children. Journal of Paedrictics and Child Health, 47(11), 776–782.
  32. Hirschman, E. C. (2007). Metaphor in the marketplace. Marketing Theory, 7(3), 227–248.
  33. Holt, D. B. (1995). How consumers consume: A typology of consumption practices. Journal of Consumer Research, 22(1), 1–16.
  34. Horne, J., Knox, D., Zusman, J., & Zusman, M. E. (2007). Tattoos and piercings: Attitudes, behaviors, and interpretations of college students. College Student Journal, 41(4), 1011–1020.
  35. Hsee, C. K., Yang, Y., Li, N., & Shen, L. (2009). Wealth, warmth, and well-being: Whether happiness ıs relative or absolute depends on whether it is about money, acquisition, or consumption. Journal of Marketing Research, 46, 396–409.
  36. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.
  37. Huiru, W., Zhijian, Z., Jianying, F., Dong, T., & Weisong, M. (2018). Influencing factors on chinese wine consumers’ behavior under different purchasing motivations based on a multi-classification method. Italian Journal of Food Science, 30(4), 775–791.
  38. Janssen, M., Hartog, M., Matheus, R., Yi Ding, A., & Kuk, G. (2022). Will algorithms blind people? The effect of explainable ai and decision-makers’ experience on ai-supported decision-making in government. Social Science Computer Review, 40(2), 478–493.
  39. Kaličanin, K., Čolović, M., Njeguš, A., & Mitić, V. (2019). Benefits of artificial intelligence and machine learning in marketing. Data Science and Digital Broadcasting Systems, 472–477. doi: 10.15308/Sinteza-2019-472-477.
  40. Klein, J. T. (2010). The taxonomy of interdisciplinarity. In R. Frodeman, J. T. Klein, & C. Mitcham (Eds.), Oxford handbook of interdisciplinarity. Oxford University Press.
  41. Kotler, P., Wong, V., Saunders, J., & Armstrong, G. (2005). Principles of marketing (4. European ed.) Pearson Education Publishing.
  42. Kotras, B. (2020). Mass personalization: Predictive marketing algorithms and the reshaping of consumer knowledge. Big Data and Society, 7(2), 1–14. doi: 10.1177/2053951720951581.
  43. Kowalski, K. M. (1999). How peer pressure can affect you. Current Health, 2, 6.
  44. Lakoff, G. (2008). The neural theory of metaphor. In R. W. Jr Gibbs (Ed.), The Cambridge handbook of metaphor and thought (pp. 17–38). Cambridge University Press.
  45. Leiss, W., Kline, S., & Jhally, S. (1990). Social communication in advertising: Persons, products and images of well-being. Routledge.
  46. Levy, S. J. (1981). Interpreting consumer mythology: A structural approach to consumer behavior. Journal of Marketing, 45(2), 49–61.
  47. Mahajan, K., Jamsandekar, S., & Gurav, A. M. (2017). Machine learning approach for marketing intelligence: Managerial application. International Journal of Engineering and Computer Science, 6(7), 21929–21936. doi: 10.18535/ijecs/v6i7.07.
  48. Malik, M. E., Ghafoor, M. M., Iqbal, H. K., Ali, Q., Hunbal, H., Noman, M., & Ahmad, B. (2013). Impact of brand image and advertisement on consumer buying behavior. World Applied Sciences Journal, 23(1), 117–122.
  49. McGriff, J., Prater, T., & Kiser, S. B. (2015). Factors affecting the decision to acquire tattoos and other body art. International Journal of Business and Public Administration, 12(1), 25–41.
  50. McQuarrie, E. F., & Mick, D. G. (1999). Visual rhetoric in advertising: Text interpretive, experimental, and reader response analyses. Journal of Consumer Research, 26(1), 37–54.
  51. Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning. MIT Press.
  52. Moisander, J., & Valtonen, A. (2006). Qualitative marketing research – A cultural approach. Sage Publications.
  53. Park, C. W., & Lessig, V. P. (1977). Students and housewives: Differences in susceptibility to reference group influence. Journal of Consumer Research, 4(2), 102–110.
  54. Pohl, C., & Hadorn, G. H. (2007). Principles for designing transdisciplinary research: Proposed by the swiss academies of arts and sciences. oekom Verlag.
  55. Pride, W. M., & Ferrell, O. C. (2000). Marketing concepts and strategies (p. 195). Houghton Mifflin Company.
  56. Purdy, M., & Daugherty, P. (2016). Why artificial intelligence is the future of growth. Canada, Accenture, 3–26.
  57. Raheem, A. R., Vishnu, P., & Ahmed, A. M. (2014). Impact of product packaging on consumer’s buying behavior. European Journal of Scientific Research, 122(2), 125–134.
  58. Rakthin, S., Calantone, R. J., & Wang, J. F. (2016). Managing market intelligence: The comparative role of absorptive capacity and market orientation. Journal of Business Research, 69(12), 5569–5577. doi: 10.1016/j.jbusres.
  59. Rammstedt, B., & John, O. P. (2007). Measuring personality in one minute or less: A 10 item short version of the Big Five Inventory in English and German. Journal of Research in Personality, 41, 203–212.
  60. Rhoten, D., O’Connor, E., & Hackett, E. J. (2009). The act of collaborative creation and the art of integrative creativity: Originality, disciplinarity and interdisciplinarity. Thesis Eleven, 96(1), 83–108.
  61. Ritzer, G. (2003). Islands of the living dead. American Behavioral Scientist, 47(2), 119–136.
  62. Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507–2517.
  63. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229.
  64. Sanders, C. R. (1985). Tattoo consumption: Risk and regret in the purchase of a socially marginal source. Advances in Consumer Research, 12, 17–22.
  65. Shebl, S., Abd Elhady, D., & Refaat, A. A. E. H. (2021). Economic and social factors affecting the purchasing power of customers in fast food restaurants (Applied in Marsa Matrouh City). Journal of Tourism, Hotels and Heritage, 2(1), 1–14.
  66. Solomon, M. R. (2007). Consumer behavior: Buying, having, being. Pearson Prentice Hall.
  67. Stern, B. B. (1988). How does an ad mean? Language in services advertising. Journal of Advertising, 17(2), 3–14.
  68. Stern, B. B. (1995). Consumer myths: Frye’s taxonomy and the structural analysis of consumption text. Journal of Consumer Research, 22(2), 165–185.
  69. Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, 69, 135–146. doi: 10.1016/j.indmarman.
  70. Van Noordt, C., & Misuraca, G. (2022). Exploratory insights on artificial intelligence for government in Europe. Social Science Computer Review, 40(2), 426–444.
  71. Vapnik, V. (2013). The nature of statistical learning theory. Springer Science and Business Media.
  72. Watson, J. (1998). Why did you put that there? Gender, materialism and tattoo consumption. Advances in Consumer Research, 25, 453–460.
  73. Weber, P., Weber, N., Goesele, M., & Kabst, R. (2018). Prospect for Knowledge in Survey Data: An artificial neural network sensitivity analysis. Social Science Computer Review, 36(5), 575–590.
  74. Yang, W., Wang, K., & Zuo, W. (2012). Neighborhood component feature selection for high-dimensional data. Journal of Computers, 7(1), 161–168.
  75. Zaltman, G., & Coulter, R. H. (1995). Seeing the voice of the customer: Metaphor-based advertising research, Journal of Advertising Research, 35(4), 35–51.
  76. Zuo, Y., Yada, K., & Ali, A. S. (2016). Prediction of consumer purchasing in a grocery store using machine learning techniques. In 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE) (pp. 18–25). IEEE.
DOI: https://doi.org/10.2478/mmcks-2025-0001 | Journal eISSN: 2069-8887 | Journal ISSN: 1842-0206
Language: English
Page range: 35 - 51
Submitted on: Aug 15, 2024
Accepted on: Jan 23, 2025
Published on: Mar 30, 2025
Published by: Society for Business Excellence
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Alaaddin Selcuk Koyluoglu, Engin Esme, published by Society for Business Excellence
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.