Have a personal or library account? Click to login
Mineralogical and whole-rock geochemical characterization of cherts from Gebel EL-Khashab (Oligocene), East Cairo, Egypt: evidence for silica sources Cover

Mineralogical and whole-rock geochemical characterization of cherts from Gebel EL-Khashab (Oligocene), East Cairo, Egypt: evidence for silica sources

Open Access
|Dec 2025

References

  1. Abdel-Motelib, A., Kabesh, M., El Manawi, A. H., & Said, A. (2015). Oligocene lacustrine tuff facies, Abu Treifeya, Cairo-Suez Road, Egypt. Journal of African Earth Sciences, 102, 33–40. https://doi.org/10.1016/j.jafrearsci.2014.10.021
  2. Adachi, M., Yamamoto, K., & Sugisaki, R. (1986). Hydrothermal chert and associated siliceous rocks from the Northern Pacific their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1–2), 125–148. https://doi.org/10.1016/0037-0738(86)90075-8
  3. Ali-Bik, M. W., & Gabr, S. S. (2022). Spectral analyses, geology and petrology of the Gulf of Suez rift-related Oligo-Miocene basalts at Abu Zenima area, west central Sinai, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 85–96. https://doi.org/10.1016/j.ejrs.2022.01.002
  4. Amemiya, C. T., Miyake, T., & Rast, J. P. (2005). Echinoderms. Current Biology, 15(23), R944–R946. https://doi.org/10.1016/j.cub.2005.11.026
  5. Bangdong, X., Lirong, Z., Zhong, F., & Hongbo, L. (1995). The origin of bedded cherts of the Early Permian Gufeng Formation in the Lower Yangtze area, Eastern China. Acta Geologica Sinica-English Edition, 8(4), 372–386. https://doi.org/10.1111/j.1755-6724.1995.mp8004003.x
  6. Bau, M. (1991). Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3–4), 219–230. https://doi.org/10.1016/0009-2541(91)90115-8
  7. Bolhar, R., & Van Kranendonk, M. J. (2007). A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Research, 155(3–4), 229–250. https://doi.org/10.1016/j.precamres.2007.02.002
  8. Bolhar, R., Van Kranendonk, M. J., & Kamber, B. S. (2005). A trace element study of siderite–jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton—Formation from hydrothermal fluids and shallow seawater. Precambrian Research, 137(1–2), 93–114. https://doi.org/10.1016/j.precamres.2005.02.001
  9. Boström, K. (1970). Submarine volcanism as a source for iron. Earth and Planetary Science Letters, 9(4), 348–354. https://doi.org/10.1016/0012-821X(70)90134-2
  10. Boström, K. (1973). The origin and fate of ferromanganon active ridge sediments. Stockholm Contributions in Geology, 27, 149–243.
  11. Boström, K. (1983). Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (Eds). Hydrothermal processes at seafloor spreading centers (pp. 473–489). Springer.
  12. Boström, K., & Peterson, M. N. A. (1969). The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 7(5), 427–447. https://doi.org/10.1016/0025-3227(69)90016-4
  13. Crerar, D. A., & Anderson, G. M. (1971). Solubility and solvation reactions of quartz in dilute hydrothermal solutions. Chemical Geology, 8(2), 107–122. https://doi.org/10.1016/0009-2541(71)90052-0
  14. Dias, ÁS., Früh-Green, G. L., Bernasconi, S. M., & Barriga, F. J. A. S. (2011). Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field. Marine Geology, 279(1–4), 128–140. https://doi.org/10.1016/j.margeo.2010.10.017
  15. Douville, E., Bienvenu, P., Charlou, J. L., Donval, J. P., Fouqet, Y., Appriou, P., & Gamo, T. (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5), 627–643. https://doi.org/10.1016/S0016-7037(99)00024-1
  16. El-Sharkawi, M. A. (1977). Glauconite, a possible source of iron for El Gidida iron deposits, Bahariya Oases, Egypt. Egyptian Journal of Geology, 1, 109–116.
  17. Fleet, A. J. (1983). Hydrothermal and hydrogenous ferromanganese deposits: Do they form a continuum? The rare earth element evidence. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (Eds). Hydrothermal processes at seafloor spreading centers (pp. 535–555). Springer.
  18. Ge, X., Mou, C., Men, X., Wang, Q., Hou, Q., Zheng, B., & Chen, F. (2024). Geochemical features, origin, and depositional environment of Late Ordovician–Early Silurian Wufeng and Longmaxi Formation cherts in the southeastern Sichuan Basin. Minerals, 14(8), 745. https://doi.org/10.3390/min14080745
  19. Hassan, K. M. (2014). The fossil wood of East Cairo, Egypt: A mineralogical view. Mineralogia, 45(1–2), 47–57. https://doi.org/10.1515/mipo-2015-0003
  20. Hassan, K. M. (2015). Stable isotopic signatures of the modern land snail Eremina desertorum from a low-latitude (hot) dry desert—A study from the Petrified Forest, New Cairo, Egypt. Geochemistry, 75(1), 65–72. https://doi.org/10.1016/j.chemer.2014.09.002
  21. Hassan, K. M. (2017). Mineralogical and geochemical signatures of silicified wood from the Petrified Forest, New Cairo, Egypt. The Canadian Mineralogist, 55(2), 317–332. https://doi.org/10.3749/canmin.1600089
  22. Hassan, K. M., & Brunarska, I. (2023). Thorite inclusions in zircon of the monzogranite, Lower Nubia, SW Egypt. Mineralogia, 54(1), 69–77. https://doi.org/10.2478/mipo-2023-0007
  23. Heaney, P. J. (1995). Moganite as an indicator for vanished evaporites: A testament reborn? Journal of Sedimentary Research, 65(4a), 633–638. https://doi.org/10.1306/d4268180-2b26-11d7-8648000102c1865d
  24. Heaney, P. J., & Post, J. E. (1992). The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties. Science, 255(5043), 441–443. https://doi.org/10.1126/science.255.5043.441
  25. Huang, H., Du, Y. S., Yang, J. H., Tao, P., Huang, H. W., Huang, Z. Q., Xie, C. X., & Hu, L. S. (2012). Geochemical features of siliceous sediments of the Shuicheng-Ziyun-Nandan rift basin in the Late Paleozoic and their tectonic implication. Acta Geologica Sinica, 86(12), 1994–2010. https://www.semanticscholar.org/paper/Geochemical-Features-of-Siliceous-Sediments-of-the-Hu/7841808984cf8ed85ac476689243c33257342a46
  26. Hurst, S., Johnson, E., McCoy, Z. M., & Cunningham, D. (2010). The lithology of Ogallala gravels and hunter-gatherer procurement strategies along the Southern High Plains eastern escarpment of Texas, USA. Geoarchaeology: An International Journal, 25(1), 96–121. https://doi.org/10.1002/gea.20297
  27. Juracek, K. E., & Perry, C. A. (2005). Gravel sources for the Neosho River in Kansas, 2004 (p. 11). USGS Report.
  28. Knauth, L. P. (1994). Petrogenesis of chert. In: Heaney, P.J., Prewitt, C.T., Gibbs, C.V. (Eds). Silica—Physical behavior, geochemistry, and materials applications. Mineralogical Society of America Reviews, 29, 233–258. https://doi.org/10.1515/9781501509698-012
  29. Knoll, A. H. (2014). Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspectives in Biology, 6, 1–14. https://doi.org/10.1101/cshperspect.a016121
  30. Maliva, R. G., Knoll, A. H., & Simonson, B. M. (2005). Secular change in the Precambrian silica cycle: Insights from chert petrology. Geological Society of America Bulletin, 117(7–8), 835–845. https://doi.org/10.1130/B25555.1
  31. Marcos, C., De Uribe-Zorita, M., Álvarez-Lloret, P., Adawy, A., Fernández, P., & Arias, P. (2021). Quartz crystallite size and moganite content as indicators of the mineralogical maturity of the Carboniferous chert: The case of cherts from eastern Asturias (Spain). Minerals, 11(6), 611. https://doi.org/10.3390/min11060611
  32. Moore, K. R., Cremiere, A., Present, T. M., Barnett, A., Bergmann, K. D., Amthor, J., & Grotzinger, J. (2024). Primary microfossiliferous chert in the Aptian Barra Velha Formation. Sedimentology, 71(6), 1815–1842. https://doi.org/10.1111/sed.13193
  33. Murray, R. W. (1994). Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology, 90(3–4), 213–232. https://doi.org/10.1016/0037-0738(94)90039-6
  34. Murray, R. W., Ten Brink, M. R. B., Gerlanch, D. C., Russ, G. P. III, & Jones, D. L. (1991). Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine grained marine sediments. Geochimica et Cosmochimica Acta, 55(7), 1875–1895. https://doi.org/10.1016/0016-7037(91)90030-9
  35. Peng, J., Yi, H., & Xia, W. (2000). Geochemical criteria of the Upper Sinian cherts of hydrothermal origin on the southeast continental margin of the Yangtze Plate. Chinese Journal of Geochemistry, 19(3), 217. https://doi.org/10.1007/BF03166879
  36. Qiu, Z., & Wang, Q. (2011). Geochemical evidence for submarine hydrothermal origin of the Middle-Upper Permian chert in Laibin of Guangxi, China. China Earth Sciences, 54(7), 1011–1023. https://doi.org/10.1007/s11430-011-4198-x
  37. Said, R. (1990). The geology of Egypt. A.A. Balkema.
  38. Salama, A., & Mustoe, G. (2023). Mineralogy of Oligocene fossil wood, bone and associated sediments from the Petrified Forest protected area, New Cairo, Egypt. Lethaia, 56(3), 1–15. https://doi.org/10.18261/let.56.3.6
  39. Shen, B., Ma, H., Ye, H., Lang, X., Pei, H., Zhou, C., Zhang, S., & Yang, R. (2018). Hydrothermal origin of syndepositional chert bands and nodules in the Mesoproterozoic Wumishan Formation: Implications for the evolution of Mesoproterozoic cratonic basin, North China. Precambrian Research, 310, 213–228. https://doi.org/10.1016/j.precamres.2018.03.007
  40. Shimizu, H., & Masuda, A. (1977). Cerium in chert as an indication of marine environment of its formation. Nature, 266(5600), 346–348. https://doi.org/10.1038/266346a0
  41. Shukri, N. M. (1954). On cylindrical structures and coloration of Gebel Ahmar near Cairo. Cairo University, Egypt. Bulletin of Faculty of Science, 32, 1–23.
  42. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell.
  43. Tosson, S. (1954). The Rennebaum Volcano in Egypt. Bulletin Volcanologique, 15(1), 99–108. https://doi.org/10.1007/BF02595999. https://link.springer.com/article/10.1007/BF02595999
  44. Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarkdon, M. O., & Wood, R. A. (2016). Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438, 146–162. https://doi.org/10.1016/j.chemgeo.2016.06.027
  45. Tucker, M. E., & Jones, S. J. (2001). Sedimentary petrology. John Wiley & Sons.
  46. Yamamoto, K. (1987). Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes. Sedimentary Geology, 52(1–2), 65–108. https://doi.org/10.1016/0037-0738(87)90017-0
  47. Zheng, H., Wu, J., Tang, H., Liu, B., Yang, X., Shi, K., & Dong, Y. (2021). Origin of the multiple-sourced cherts in Maokou carbonates in Sichuan Basin, South China. Minerals 11(11). https://doi.org/10.3390/min11111269
  48. Zhou, J., Yang, H., Liu, H., & Jiao, Y. (2022). The depositional mechanism of hydrothermal chert nodules in a lacustrine environment: A case study in the Middle Permian Lucaogou Formation, Junggar Basin, Northwest China. Minerals, 12(10), 1333. https://doi.org/10.3390/min12101333
  49. Zhou, X. P., He, Y. B., Du, H. Q., & Li, H. (2009). Geochemical characteristics and origin of the Permian siliceous rocks in Xuanhan region of Sichuan Province. Journal of Paleobiogeography, 11(6), 670–680. http://dx.doi.org/10.7605/gdlxb.2009.06.007 (in Chinese with English abstract)
  50. Zhou, X. P., He, Y. B., Luo, J. X., & Xu, H. M. (2012). Origin of Permian nodular, striped and lump siliceous rock in eastern Sichuan Province. Journal of Palaeogeography, 14(2), 143–152. http://dx.doi.org/10.7605/gdlxb.2012.02.001 (in Chinese with English abstract).
  51. Zhou, Y. Z., He, J. G., & Yang, Z. J. (2004). Hydrothermally sedimentary formations and related mineralization of South China. Earth Science Frontiers, 11(2), 373–378. https://doi.org/10.3389/feart.2024.1343441
DOI: https://doi.org/10.2478/mipo-2025-0012 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 120 - 133
Submitted on: Sep 13, 2025
|
Accepted on: Nov 18, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Kamaleldin M. Hassan, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.