Have a personal or library account? Click to login
A phlogopite-amphibole-plagioclase bearing websterite from Guinadji volcano (Adamawa Plateau, Northern Cameroon): evidence of a cumulate origin and crustal event Cover

A phlogopite-amphibole-plagioclase bearing websterite from Guinadji volcano (Adamawa Plateau, Northern Cameroon): evidence of a cumulate origin and crustal event

Open Access
|Dec 2025

References

  1. Allègre, C. J., & Turcotte, D. L. (1986). Implications of a two componentmarble-cakemantle. Nature, 323(6084), 123–127. https://doi.org/10.1038/323123a0
  2. Best, M. G. (1974). Mantle-derived amphibole in xenoliths in alkalic basaltic lavas. Journal of Geophysical Research, 79(14), 2107–2113. https://doi.org/10.1029/JB079i014p02107
  3. Blundy, J. D., & Holland, T. J. B. (1990). Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2), 208–224. https://doi.org/10.1007/BF00306444
  4. Bonadiman, C., Brombin, V., Andreozzi, G. B., Benna, P., Coltorti, M., Curetti, N., Faccini, B., Merli, M., Pelorosso, B., Stagno, V., Tesauro, M., & Pavese, A. (2021). Phlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambient. Scientific Reports, 11(1), 11829. https://doi.org/10.1038/s41598-021-90844-w
  5. Browne, S. E., & Fairhead, J. D. (1983). Gravity study of the Central African Rift System: A model of continental disruption. Part 1: The Ngaoundere and Abu Gabra rift. Tectonophysics, 94(1-4), 187–203. https://doi.org/10.1016/0040-1951(83)90016-1
  6. Burke, K. (2001). Origin of the Cameroon Line of volcano-capped swells. Journal of Geology, 109(3), 349–362. https://doi.org/10.1086/319977
  7. Caldeira, R., & Munha, J. M. (2002). Petrology of ultramafic nodules from São Tomé Island, Cameroon Volcanic Line (oceanic sector). Journal of African Earth Sciences, 34(3-4), 231–246. https://doi.org/10.1016/S0899-5362(02)00022-2
  8. Coltorti, M., Beccaluva, L., Bonadiman, C., Faccini, B., Ntaflos, T., & Siena, F. (2004). Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos, 75(1-2), 115–139. https://doi.org/10.1016/j.lithos.2003.12.021
  9. Dantas, C., Ceuleneer, G., Gregoire, M., Python, M., Freydier, R., Warren, J., & Dick, H. J. B. (2007). Pyroxenites from the Southwest Indian ridge, 9–16 degrees E: Cumulates from incremental melt fractions produced at the top of a cold melting regime. Journal of Petrology, 48(4), 647–660. https://doi.org/10.1093/petrology/egl076
  10. Dantas, C., Grégoire, M., Koester, E., Conceição, R. V., & Rieck, N. (2009). The lherzolite-websterite xenolith suite from Northern Patagonia (Argentina): Evidence of mantle-melt reaction processes. Lithos, 107(1–2), 107120. https://doi.org/10.1016/j.lithos.2008.06.012
  11. Dautria, J., & Girod, M. (1986). Les enclaves de lherzolite à spinelle et plagioclase du volcan de Dibi (Adamaoua, Cameroun): des témoins d’un manteau supérieur anormal. Bulletin of the Mineral Research and Exploration, 109(3), 275–288. https://doi.org/10.3406/bulmi.1986.7934
  12. DeBari, S. M., & Coleman, R. G. (1989). Examination of the deep levels of an island arc: Evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. Journal of Geophysical Research, 94(B4), 4373–4391. https://doi.org/10.1029/jb094ib04p04373
  13. Déruelle, B., Ngounouno, I., & Demaiffe, D. (2007). The Cameroon Hot Line (CHL): A unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. Comptes rendus - Geoscience, 339(9), 589–600. https://doi.org/10.1016/j.crte.2007.07.007
  14. Dorbath, C., Fairhead, J. D., & Stuart, G. W. (1986). A teleseismic delay time study across the Central African Shear Zone in the Adamawa region of Cameroon. Geophysical Journal of the Royal Astronomical Society, 86, 751–766. https://doi.org/10.1111/j.1365-246X.1986.tb00658.x
  15. Downes, H. (2000). Multiple origins for mantle pyroxenites: Subducted ocean crust and/or cumulates from asthenospheric magmas. Gold2000.J.503.
  16. Downes, H. (2001). Formation and modification of the shallow sub-continental lithospheric mantle: A review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of Western and Central Europe. Journal of Petrology, 42(1), 233–250. https://doi.org/10.1093/petrology/42.1.233
  17. Dunlop, H. M., & Fitton, J. D. (1979). A K-Ar and Sr-isotope study of the volcanic rocks of the island of Principe, West Africa: Evidence for mantle heterogeneity beneath the Gulf of Guinea. Contributions to Mineralogy and Petrology, 71(1), 125–131. https://doi.org/10.1007/BF00375428
  18. Fitton, J. G., & Dunlop, H. M. (1985). The Cameroon Line, West Africa and its bearing on the origin of oceanic and continental alkali basalt. Earth and Planetary Science Letters, 72(1), 23–38. https://doi.org/10.1016/0012-821X(85)90114-1
  19. Francis, D. M. (1976). The origin of amphibole in lherzolite xenoliths from Nunivak Island, Alaska. Journal of Petrology, 17(3), 357–378. https://doi.org/10.1093/petrology/17.3.357
  20. Girod, M., Dautria, J., Ball, E., & Soba, D. (1984). Pétrologie-estimation de la profondeur du Moho sous le Massif Volcanique de l’Adamoua (Cameroun), à partir de l’étude d’enclaves de lherzolite. Academy Sciences, Paris, 298, 699–704.
  21. Irving, A. J. (1980). Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. American Journal of Science, 280-A, 389–426.
  22. Karmalakar, N. R., Duraiswami, R. A., Griffin, W. L., & O’reilly, S. Y. (2005). Enigmatic orthopyroxene-rutile-spinel intergrowth in the mantle xenoliths from Kutch. Current Science, v0.76(5), 687–693.
  23. Kelemen, P. B., Dick, H. J. B., & Quick, J. E. (1992). Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358(6388), 635–641. https://doi.org/10.1038/358635a0
  24. Khedr, M. Z., & Arai, S. (2016). Chemical variations of mineral inclusions in Neoproterozoic high-Cr chromitites from Egypt: Evidence of fluids during chromitite genesis. Lithos, 240–243, 309–326. https://doi.org/10.1016/j.lithos.2015.11.029
  25. Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J., Maresch, W. V., Nickel, E. H., Tock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., … Youzhi, G. (1997). Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineralogical Magazine, 61(5), 295–310. https://doi.org/10.1180/minmag.1997.061.405.13
  26. Lu, J., Griffin, W. L., Tilhac, R., Xiong, Q., Zheng, J., & O’Reilly, S. Y. (2018). Tracking deep lithospheric events with garnet-websterite xenoliths from southeastern Australia. Journal of Petrology, 59(5), 901–930. https://doi.org/10.1093/petrology/egy049
  27. Marcel, J., Abate Essi, J. M., Nouck, P. N., Sanda, O., & Manguelle-Dicoum, E. (2018). Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa). Earth Planets Space, 70, 42. https://doi.org/10.1186/s40623-018-0812-x
  28. Marchev, P., Arai, S., & Vaselli, O. (2006). Cumulate xenoliths series in the Krumovgrad alkaline basaltic and lamprophyric dykes: Evidence for the existence of layered plutons under the Eastern Rhodope metamorphic core-complexes, Bulgaria. In Y. Dilek, & S. Pavlides (Eds.), Post-collisional tectonics and magmatism in the Eastern Mediterranean region (pp. 237–258). Geological Society of America, Special Papers no. 409.
  29. Matsukage, K., & Oya, M. (2010). Petrological and chemical variability of peridotite xenoliths from the Cameroon Volcanic Line, West Africa: An evidence for plume emplacement. Journal of Mineralogical and Petrological Science, 10(2), 57–69. https://doi.org/10.2465/jmps.090304
  30. Morimoto, N., Fabriès, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifert, F. A., Zussman, J., Aoki, K., & Gottardi, G. (1988). Nomenclature of pyroxenes. Mineralogical Magazine, 52(367), 535–550. https://doi.org/10.1180/minmag.1988.052.367.15
  31. Mulimbi Kagarabi, P., Chako-Tchamabe, B., Tamen, J., Tumba, K., Nkouathio, D. G., Ntaflos, T., Tibane, L. V., Nzolang, C., & Nguimatsia Tengomo, S. (2025). Mineralogical, petrological, and geochemical features of alkali basalts from the Dibi Area, Adamawa Plateau (Cameroon Volcanic Line). Journal of Geoscience and Environment Protection, 13(9), 75–107. https://doi.org/10.4236/gep.2025.139005
  32. Niida, K., & Green, D. H. (2000). Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contributions to Mineralogy and Petrology, 135(1), 18–40. https://doi.org/10.1007/s004100050495
  33. Njombie Wagsong, M.P., Temdjim, R., & Foley, S.F. (2018). Petrology of spinel lherzolite xenoliths from Youkou volcano, Adamawa Massif, Cameroon Volcanic Line: mineralogical and geochemical fingerprints of sub-rift mantle processes. Contrib Mineral Petrol 173(2), 1–20. https://doi.org/10.1007/s00410-018-1438-5
  34. Nkouandou, O. F., Bardintzeff, J. M., Njankouo Ndassa, Z. N., Fagny Mefire, A., & Haman, A. (2022). Wehrlite xenoliths and petrogenetic implications, Hosséré Do Guessa volcano, Adamawa plateau, Cameroon. Open Geosciences, 14(1), 1075–1091. https://doi.org/10.1515/geo-2022-0408
  35. Nkouandou, O. F., Ngounouno, I., Déruelle, B., Ohnenstette, D., Montigny, R., & Demaiffe, D. (2008). Petrology of the Mio-Pliocene volcanism to the north and east of Ngaoundéré (Adamawa, Cameroon). Comptes Rendus. Géoscience, 340(1), 28–37. https://doi.org/10.1016/j.crte.2007.10.012
  36. Nkouandou, O. F., & Temdjim, R. (2011). Petrology of spinel lherzolite xenoliths and host basaltic lava from Ngao Volgar volcano, Adamawa Massif (Cameroon Volcanic Line, West Africa): Equilibrium conditions and mantle characteristics. Journal of Geosciences, 56(4), 375–387. http://doi.org/10.3190/jgeosci.108
  37. Nkouathio, D. G., Kagou Dongmo, A., Bardintzeff, J. M., Wandji, P., Bellon, H., & Pouclet, A. (2008). Evolution of volcanism in Graben and horst structures along the Cenozoic Cameroon Line (Africa): Implications for tectonic evolution and mantle source composition. Mineralogy and Petrology, 94(3), 287–303. https://doi.org/10.1007/s00710-008-0018-1
  38. Ntaflos, T., Bizimis, M., & Abart, R. (2017). Mantle xenoliths from Szentbékálla, Balaton: Geochemical and petrological constraints on the evolution of the lithospheric mantle underneath Pannonian Basin, Hungary. Lithos, 276, 30–44. https://doi.org/10.1016/j.lithos.2016.12.018
  39. O'Reilly, S. Y., & Griffin, W. L. (2013). Mantle metasomatism. In D. E. Harlov & H. O. Austrheim (Eds.), Metasomatism and the chemical transformation of rock (pp. 471–533). Lecture Notes in Earth System Sciences. Springer.
  40. Pintér, Zs, Patkó, L., Tene-Djoukam, J. F., Kovács, I., Tchouankoue, J. P., Falus, G., Konc, Z., Tommasi, A., Barou, F., Mihály, J., Németh, C., & Jeffries, T. (2015). Characterization of the sub-continental lithospheric mantle beneath the Cameroon Volcanic Line inferred from alkaline basalt hosted peridotite xenoliths from Barombi Mbo and Nyos Lakes. Journal of African Earth Sciences, 111, 170–193. https://doi.org/10.1016/j.jafrearsci.2015.07.006
  41. Poudjom-Djomani, Y. H., Diament, M., & Wilson, M. (1997). Lithospheric structure across the Adamawa Plateau (Cameroon) from gravity studies. Tectonophysics, 273(3-4), 317–327. https://doi.org/10.1016/S0040-1951(96)00280-6
  42. Preston, J., & Still, J. (2001). Amphibole calculation sheet v1.2 (online).
  43. Rieder, M., Cavazzini, G. D., Yakonov, Y., Gottardi, G., Guggenheim, S., Koval, P. V., Müller, G., Neiva, A. M. R., Radoslovich, E. W., Robert, J. L., Sassi, F. P., Takeda, H., Weiss, Z., & Wones, D. R. (1998). Nomenclature of the micas. Canadian Mineralogist, 36(2), 905–912. https://dx.doi.org/10.1180/minmag.1999.063.2.13
  44. Rogkala, A., Petrounias, P., Tsikouras, B., & Hatzipanagiotou, K. (2017). New occurrence of pyroxenites in the Veria-Naousa ophiolite (North Greece): Implications on their origin and petrogenetic evolution. Geosciences, 7(4), 92. https://doi.org/10.3390/geosciences7040092
  45. Selim, H. A., Asimow, P. D., Maurice, A. E., Ismail, M. A., Wilner, O. D., Dalleska, N. F., Gharib, M. E., & Mahmoud, S. A. A. (2025). Petrology and geochemistry of ophiolitic pyroxenite in the Eastern Desert of Egypt: Genesis of ultramafic cumulates and implications for Neoproterozoic supra-subduction seafloor metamorphism. Geochemistry, Geophysics, Geosystems, 26(3), e2024GC011686. https://doi.org/10.1029/2024GC011686
  46. Serri, G., Hébert, R., & Hekinian, R. (1988). Petrology of a plagioclase-bearing olivine websterite from the Gorringe Bank (northeastern Atlantic Ocean). Canadian Journal of Earth Sciences, 25(4), 557–569. https://doi.org/10.1139/e88-054
  47. Smith, D. (2014). Clinopyroxene precursors to amphibole sponge in arc crust. Nature Communications, 5, 4329. https://doi.org/10.1038/ncomms5329
  48. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., & Nikogosian, I. K. (2005). An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033), 590–597. https://doi.org/10.1038/nature03411
  49. Sui, J. L., Li, N., Fan, Q. C., & Xu, Y. G. (2014). Phlogopites and potassic melts in mantle xenoliths from Nuomin volcanic field, northern Great Xing’an Range. Acta Petrologica Sinica, 30(12), 3587–3594.
  50. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In A. D. Saunders, & M. J. Norry (Eds.), Magmatism in the ocean basins (Vol. 42, pp. 313–345). Geological Society.
  51. Tamen, J., Nkoumbou, C., Reusser, E., & Tchoua, F. (2015). Petrology and geochmistry of mantle xenoliths from the Kapsiki Plateau (Cameroon Volcanic Line): Implications for lithospheric upwelling. Journal of African Earth Sciences, 101(12), 119–134. https://doi.org/10.1016/j.jafrearsci.2014.09.008
  52. Tedonkenfack, S. S. T., Puziewicz, J., Aulbach, S., Ntaflos, T., Kaczmarek, M. A., Matusiak-Małek, M., Kukuła, A., & Ziobro, M. (2021). Lithospheric mantle refertilization by DMM-derived melts beneath the Cameroon Volcanic Line – A case study of the Befang xenolith suite (Oku Volcanic Group, Cameroon). Contributions to Mineralogy and Petrology, 176(5), 37. https://doi.org/10.1007/s00410-021-01796-3
  53. Temdjim, R. (2012). Ultramafic xenoliths from Lake Nyos area, Cameroon Volcanic Line, West-Central Africa: Petrography, mineral chemistry, equilibrium conditions and metasomatic features. Chemie der Erde, 72(1), 39–60. https://doi.org/10.1016/j.chemer.2011.07.002
  54. Temdjim, R., Boivin, P., Chazot, G., Robin, C., & Rouleau, E. (2004a). L’hétérogénéité du manteau supérieur à l’aplomb du volcan Nyos (Cameroun) révélée par les enclaves ultrabasiques. Comptes Rendus Geosciences, 336, 1239–1244. https://doi.org/10.1016/j.crte.2004.07.005
  55. Temdjim, R., Njilah, I. K., Kamgang, P., & Nkoumbou, C. (2004b). Données nouvelles sur les laves felsiques de Ngaoundéré (Adamaoua, ligne du Cameroun): chronologie K-Ar et pétrologie. African Journal of Science and Technology, 5(2), 113–123. https://doi.org/10.4314/AJST.V5I2.15338
  56. Tokam, A.-P. K., Tabod, C. T., Nyblade, A. A., Julià, J., Wiens, D. A., & Pasyanos, M. E. (2010). Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions. Geophysical Journal International, 183, 1061–1076. https://doi.org/10.1111/j.1365-246X.2010.04776.x
  57. Toteu, S. F., Van Schmus, W. R., Penaye, J., & Michard, A. (2001). New U–Pb and Sm–Nd data from north-central Cameroon and its bearing on the pre-Pan African history of central Africa. Precambrian Research, 108(1-2), 45–73. https://doi.org/10.1016/S0301-9268(00)00149-2
  58. Wandji, P., Tsafack, J. P. F., Bardintzeff, J.-M., Nkouathio, D. G., Kagou Dongmo, A., Bellon, H., & Guillou, H. (2009). Xenoliths of dunites, wehrlites and clinopyroxenite in the basanites from Batoke volcanic cone (Mount Cameroon, Central Africa): Petrogenetic implications. Mineralogy and Petrology, 96(1), 81–98. https://doi.org/10.1007/s00710-008-0040-3
  59. Wang, X., Hou, T., Wang, M., Zhang, C., Zhang, Z., Pan, R., Marxer, F., & Zhang, H. (2021). A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. European Journal of Mineralogy, 33(5), 621–637. https://doi.org/10.5194/ejm-33-621-2021
  60. Wang, Z., Sun, S., Hou, Q., & Li, J. (2001). Effect of melt-rock interaction on geochemistry in the Kudi ophiolite (western Kunlun Mountains, northwestern China): Implication for ophiolite origin. Earth and Planetary Science Letters, 191(1–2), 33–48. https://doi.org/10.1016/S0012-821X(01)00400-9
  61. Wilson, A. H., & Chaumba, J. B. (1997). Closed system fractionation in a large magma chamber: Mineral compositions of the websterite layer and lower mafic succession of the Great Dyke, Zimbabwe. Mineralogical Magazine, 61(405), 153–173. https://doi.org/10.1180/minmag.1997.061.405.01
  62. Yang, J.-J. (2003). Relict edenite in a garnet lherzolite from the Chinese Su-Lu UHP metamorphic terrane: Implications for metamorphic history. American Mineralogist, 88(1), 180–188. https://doi.org/10.2138/am-2003-0121
DOI: https://doi.org/10.2478/mipo-2025-0011 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 103 - 119
Submitted on: Aug 10, 2025
|
Accepted on: Nov 18, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Paterne Mulimbi Kagarabi, Theodoros Ntaflos, Jules Tamen, David G. Nkouathio, Kaniki Tumba, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.