References
- Aharon, P. (1988). A stable-isotope study of magnesites from the Rum Jungle Uranium Field, Australia: Implications for the origin of strata-bound massive magnesites. Chemical Geology, 69(1–2), 127–145.
https://doi.org/10.1016/0009-2541(88)90164-7 - Bernard-Griffiths, J., Peucat, J. J., & Ohta, Y. (1993). Age and nature of protoliths in the Caledonian blueschist-eclogite complex of Western Spitsbergen: A combined approach using U U-Pb, Sm-Nd and REE whole-rock systems. Lithos, 30(1), 81–90.
https://doi.org/10.1016/0024-4937(93)90007-Y - Beyssac, O., Goffé, B., Chopin, C., & Rouzaud, J. N. (2002). Raman spectra of carbonaceous material in metasediments: A new geothermometer. Journal of Metamorphic Geology, 20(9), 859–871.
https://doi.org/10.1046/j.1525-1314.2002.00408.x - Dallmann, W. K. (2015). Geoscience atlas of Svalbard. Norsk Polarinstitutt.
- Gee, D. G., & Teben’kov, A. M. (2004). Svalbard: A fragment of the Laurentian margin. Geological Society, London, Memoirs, 30(1), 191–206.
https://doi.org/10.1144/GSL.MEM.2004.030.01.16 - Hjelle, A., Ohta, Y., & Winsnes, S. (1979). Hecla Hoek rocks of Oscar II Land and Prins Karls Forland, Svalbard. Norsk Polarinstitut Skrifter, 167, 145–169.
- Kiesl, W., Koeberl, C., & Körner, W. (1990). Geochemistry of magnesites and dolomites at the Oberdorf/Laming (Austria) deposit and implications for their origin. Geologische Rundschau, 79(2), 327–335.
https://doi.org/10.1007/BF01830629 - Knoll, A. H., & Ohta, Y. (1988). Microfossils in metasediments from Prins Karls Forland, Western Svalbard. Polar Research, 6(1), 59–67.
https://doi.org/10.1111/j.1751-8369.1988.tb00581.x - Knoll, A. H. (1992). Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard. Palaeontology, 35(4), 751–774.
- Kośmińska, K., Spear, F. S., Majka, J., Faehnrich, K., Manecki, M., Piepjohn, K., & Dallmann, W. K. (2020). Deciphering late Devonian–early Carboniferous P–T–t path of mylonitized garnet-mica schists from Prins Karls Forland, Svalbard. Journal of Metamorphic Geology, 38(5), 471–493.
https://doi.org/10.1111/jmg.12529 - Kouketsu, Y., Mizukami, T., Mori, H., Endo, S., Aoya, M., Hara, H., Nakamura, D., & Wallis, S. (2014). A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Island Arc, 23(1), 33–50.
https://doi.org/10.1111/iar.12057 - Krupenin, M. T., Kol’tsov, A. B., & Maslov, A. V. (2013, October). Physicochemical model of the formation of Satka sparry magnesite deposits. Doklady Earth Sciences, 452(2), 1020–1022.
https://doi.org/10.1134/S1028334X13100048 - Majka, J., & Kośmińska, K. (2017). Magmatic and metamorphic events recorded within the Southwestern Basement Province of Svalbard. Arktos, 3, 1–7.
https://doi.org/10.1007/s41063-017-0034-7 - Manby, G. M. (1986). Mid-Palaeozoic metamorphism and polyphase deformation of the Forland Complex, Svalbard. Geological Magazine, 123(6), 651–663.
https://doi.org/10.1017/S001675680002416X - Ohta, Y., Krasil’Šikov, A. A., Lepvrier, C., & Teben’kov, A. M. (1995). Northern continuation of Caledonian high-pressure metamorphic rocks in central-western Spitsbergen. Polar Research, 14(3), 303–316.
https://doi.org/10.1111/j.1751-8369.1995.tb00717.x - Pohl, W. (1989). Comparative geology of magnesite deposits and occurrences. In Monograph series on mineral deposits. Möller, P. (Ed) (Vol. 28, pp. 1–13). Gebrüder Borntraeger.
- Scheller, E. L., Swindle, C., Grotzinger, J., Barnhart, H., Bhattacharjee, S., Ehlmann, B. L., Farley, K., Fischer, W. W., Greenberger, R., Ingalls, M., Martin, P. E., Osorio-Rodriguez, D., & Smith, B. P. (2021). Formation of magnesium carbonates on Earth and implications for Mars. Journal of Geophysical Research: Planets, 126(7), e2021JE006828.
https://doi.org/10.1029/2021JE006828 - Schneider, D. A., Faehnrich, K., Majka, J., & Manecki, M. (2019). 40Ar/39Ar geochronologic evidence of eurekan deformation within the West Spitsbergen Fold and Thrust Belt. In: Piepjohn, K., Strauss, JV., Reinhardt, L., and McClelland, W.C. (Ed) Circum-arctic structural events: Tectonic evolution of the arctic margins and trans-arctic links with adjacent orogens. Geological Society of America, 541, 1–16.
https://doi.org/10.1130/2018.2541(08) - Schroll, E. (2002). Genesis of magnesite deposits in the view of isotope geochemistry. Boletim paranaense de geociencias, 50, 59–68.
https://doi.org/10.5380/geo.v50i0.4158 - Shengelia, D. M., Akvlediani, R. A., & Ketskhoveli, D. N. (1977). Graphite thermometer. Doklady Akademii Nauk SSSR, 235(6), 1407–1409.
- Spötl, C., Longstaffe, F. J., Ramseyer, K., & Rüdinger, B. (1999). Authigenic albite in carbonate rocks – A tracer for deep-burial brine migration? Sedimentology, 46(4), 649–666.
https://doi.org/10.1046/j.1365-3091.1999.00237.x - Tyrrell, G. W. (1924). The geology of Prince Charles Foreland, Spitsbergen. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 53(2), 443–478.
https://doi.org/10.1017/S0080456800004117 - Wala, V. T., Ziemniak, G., Majka, J., Faehnrich, K., McClelland, W. C., Meyer, E. E., Manecki, M., Bazarnik, J., & Strauss, J. V. (2021). Neoproterozoic stratigraphy of the Southwestern Basement Province, Svalbard (Norway): Constraints on the Proterozoic-Paleozoic evolution of the North Atlantic-Arctic Caledonides. Precambrian Research, 358, 106138.
https://doi.org/10.1016/j.precamres.2021.106138 - Wölfler, A., Prochaska, W., & Fritz, H. (2015). Shear zone related talc mineralizations in the Veitsch Nappe of the Eastern Greywacke Zone (Eastern Alps, Austria). Austrian Journal of Earth Sciences, 108(1), 50–72.
https://doi/10.17738/ajes.2015.0004 - Yu, X., Hu, G., Chen, Y., Xu, Y., Chen, H., Wang, D., Huang, F., You, S., Liu, H., He, L., & Li, Y. (2024). Genesis of the large-scale kamado magnesite deposit on the Tibetan Plateau. Minerals, 14(1), 45.
https://doi.org/10.3390/min14010045 - Zedef, V., Russell, M. J., Fallick, A. E., & Hall, A. J. (2000). Genesis of vein stockwork and sedimentary magnesite and hydromagnesite deposits in the ultramafic terranes of southwestern Turkey: A stable isotope study. Economic Geology, 95(2), 429–445.
https://doi.org/10.2113/gsecongeo.95.2.429 - Ziemniak, G., Manecki, M., Jeanneret, P., Walczak, K., & Kośmińska, K. (2022). Early Devonian sinistral shearing recorded by retrograde monazite-(Ce) in Oscar II Land, Svalbard. Mineralogia, 53(1), 82–108.
https://doi.org/10.2478/mipo-2022-0007