Have a personal or library account? Click to login
Integrating rotational components to optical properties observed in petrographic thin sections via automated image acquisition and analysis Cover

Integrating rotational components to optical properties observed in petrographic thin sections via automated image acquisition and analysis

Open Access
|Oct 2025

References

  1. Asmussen, P., Conrad, O., Günther, A., Kirsch, M., & Riller, U. (2015). Semi-automatic segmentation of petrographic thin section images using a “seeded-region growing algorithm” with an application to characterize wheathered subarkose sandstone. Computers & Geosciences, 83, 89–99. https://doi.org/10.1016/j.cageo.2015.05.001
  2. Chernov, V., Alander, J., & Bochko, V. (2015). Integer-based accurate conversion between RGB and HSV color spaces. Computers and Electrical Engineering, 46, 328–337. https://doi.org/10.1016/j.compeleceng.2015.08.005
  3. Ermanovics, I. F. (1967). Statistical application of plagioclase extinction in provenance studies. Journal of Sedimentary Research, 37(2), 683–687. https://doi.org/10.1306/74D7174E-2B21-11D7-8648000102C1865D
  4. Latif, G., Bouchard, K., Maitre, J., Back, A., & Bédard, L. P. (2022). Deep-learning-based automatic mineral grain segmentation and recognition. Minerals, 12(4). https://doi.org/10.3390/min12040455
  5. Li, Y., Onasch, C. M., & Guo, Y. (2008). GIS-based detection of grain boundaries. Journal of Structural Geology, 30(4), 431–443. https://doi.org/10.1016/j.jsg.2007.12.007
  6. Naseri, A., & Rezaei Nasab, A. (2023). Automatic identification of minerals in thin sections using image processing. Journal of Ambient Intelligence and Humanized Computing, 14(4), 3369–3381. https://doi.org/10.1007/s12652-021-03474-5
  7. Perera, R., Guzzetti, D., & Agrawal, V. (2021). Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science, 196, 110524. https://doi.org/10.1016/j.commatsci.2021.110524
  8. Reinhardt, J. (2004). Optical mineralogy in a modern earth sciences curriculum. Journal of Geoscience Education, 52(1), 60–67. https://doi.org/10.5408/1089-9995-52.1.60
  9. Reinhardt, J., & Raith, M. M. Minerals in thin section (MINTS). https://mints.uwc.ac.za/mints/home
  10. Tarquini, S., & Favalli, M. (2010). A microscopic information system (MIS) for petrographic analysis. Computers and Geosciences, 36(5), 665–674. https://doi.org/10.1016/j.cageo.2009.09.017
  11. Visalli, R., Ortolano, G., Godard, G., & Cirrincione, R. (2021). Micro-fabric analyzer (MFA): A new semiautomated ArcGIS-based edge detector for quantitative microstructural analysis of rock thin-sections. ISPRS International Journal of Geo-Information, 10(2). https://doi.org/10.3390/ijgi10020051
  12. Yu, J., Wellmann, F., Virgo, S., von Domarus, M., Jiang, M., Schmatz, J., & Leibe, B. (2023). Superpixel segmentations for thin sections: Evaluation of methods to enable the generation of machine learning training data sets. Computers and Geosciences, 170, 105232. https://doi.org/10.1016/j.cageo.2022.105232
  13. Zhang, Y., Zhong, H. R., Zhang, X., Gao, S. C., & Zhang, D. (2020). Orthogonal microscopy image acquisition analysis technique for rock sections in polarizer angle domain. Journal of Structural Geology, 140, 104174. https://doi.org/10.1016/j.jsg.2020.104174
  14. Zhang, P., Zhou, J., Zhao, W., Li, X., & Pu, L. (2024). The edge segmentation of grains in thin-section petrographic images utilising extinction consistency perception network. Complex and Intelligent Systems, 10(1), 1231–1245. https://doi.org/10.1007/s40747-023-01208-y
DOI: https://doi.org/10.2478/mipo-2025-0008 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 58 - 73
Submitted on: Mar 3, 2025
Accepted on: Sep 1, 2025
Published on: Oct 15, 2025
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Jacob Johannes Pretorius, Matthew Jason Mayne, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.