References
- Artemieva, I. M. (2003). Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platform. Earth and Planetary Science Letters, 213(3–4), 431–446.
https://doi.org/10.1016/S0012-821X(03)00327-3 - Asch, K. (2005). IGME 5000: 1 : 5 Million International Geological Map of Europe and Adjacent Areas - final version for the internet. BGR, Hannover.
- Babuška, V., & Plomerová, J. (2004). The Sorgenfrei–Tornquist Zone as the mantle edge of Baltica lithosphere: new evidence from three-dimensional seismic anisotropy. Terra Nova, 16(5), 243–249.
https://doi.org/10.1111/j.1365-3121.2004.00558.x - Bergelin, I., Obst, K., Söderlund, U., Larsson, K., & Johansson, L. (2011). Mesozoic rift magmatism in the North Sea region: 40Ar/39Ar geochronology of Scanian basalts and geochemical constraints. International Journal of Earth Sciences, 100(4), 787–804.
https://doi.org/10.1007/s00531-010-0516-3 - Bingen, B., Viola, G., Möller, C., Vander Auwera, J., Laurent, A., & Yi, K. (2021). The Sveconorwegian orogeny. Gondwana Research, 90, 273–313.
https://doi.org/10.1016/j.gr.2020.10.014 - Brey, G. P., Köhler, T., & Nickel, K. G. (1990). Geothermobarometry in Four-phase Lherzolites I. Experimental Results from 10 to 60kb. Journal of Petrology, 31(6), 1313–1352.
https://doi.org/10.1093/petrology/31.6.1313 - Carpenter, R. L., Edgar, A. D., & Thibault, Y. (2002). Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, Hessian Depression, Germany. Mineralogy and Petrology, 74(2), 149–162.
https://doi.org/10.1007/s007100200002 - Coltorti, M., Bonadiman, C., Hinton, R. W., Siena, F., & Upton, B. G. J. (1999). Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40(1), 133–165.
https://doi.org/10.1093/petroj/40.1.133 - Deer, W. A., Howie, R. A., & Zussman, J. (1993). An Introduction to the Rock-Forming Minerals. Longman Scientific & Technical.
- Demouchy, S., Jacobsen, S., Gaillard, F., & Stern, C. (2006). Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34, 429–432.
https://doi.org/10.1130/G22386.1 - Erlström, M. (2009). Tectonic evolution and geological framework of Scania. A review of interpretations and geological models. SGU-report 2009:10
- Falus, G., Szabó, C., & Vaselli, O. (2000). Mantle upwelling within the Pannonian Basin: evidence from xenolith lithology and mineral chemistry. Terra Nova, 12(6), 295–302.
https://doi.org/10.1046/j.1365-3121.2000.00313.x - Geological Survey of Sweden Digital Database. (2018)
https://Www.Sgu.Se/En/Products/Geological-Data/. - Hirose, K., & Kawamoto, T. (1995). Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133(3), 463–473.
https://doi.org/10.1016/0012-821X(95)00096-U - Ionov, D. A., Hofmann, A. W., & Shimizu, N. (1994). Metasomatism-induced Melting in Mantle Xenoliths from Mongolia. Journal of Petrology, 35(3), 753–785.
https://doi.org/10.1093/petrology/35.3.753 - Johansson, Å., Bogdanova, S., & Čečys, A. (2006). A revised geochronology for the Blekinge Province, southern Sweden. GFF, 128(4), 287–302.
https://doi.org/10.1080/11035890601284287 - Kelemen, P. B. (1990). Reaction Between Ultramafic Rock and Fractionating Basaltic Magma I. Phase Relations, the Origin of Calc-alkaline Magma Series, and the Formation of Discordant Dunite. Journal of Petrology, 31(1), 51–98.
https://doi.org/10.1093/petrology/31.1.51 - Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A. R., & Zanettin, B. (1989). A Classification of Igneous Rocks and Glossary of Terms (p. 193). Blackwell.
- Lu, J., Zheng, J., Griffin, W. L., O’Reilly, S. Y., & Pearson, N. J. (2015). Microscale effects of melt infiltration into the lithospheric mantle: Peridotite xenoliths from Xilong, South China. Lithos, 232, 111–123.
https://doi.org/10.1016/j.lithos.2015.06.013 - Marchev, P., Arai, S., Vaselli, O., Costa, F., Zanetti, A., & Downes, H. (2017). Metasomatic Reaction Phenomena from Entrainment to Surface Cooling: Evidence from Mantle Peridotite Xenoliths from Bulgaria. Journal of Petrology, 58(3), 599–640.
https://doi.org/10.1093/petrology/egx028 - Matusiak-Malek, M., Puziewicz, J., Ntaflos, T., Grégoire, M., Benoit, M., & Klügel, A. (2014). Two contrasting lithologies in off-rift subcontinental lithospheric mantle beneath central Europec-the Krzeniów (SW Poland) case study. Journal of Petrology, 55(9), 1799–1828.
https://doi.org/10.1093/petrology/egu042 - Mikrut, J., Matusiak-Małek, M., Puziewicz, J., Ntaflos, T., Grégoire, M., Benoit, M., & Johansson, L. (2019). Heterogeneous mantle beneath S Sweden-evidences from peridotitic xenoliths. In Geophysical Research Abstracts 21, EGU2019–15595
- Pan, S., Zheng, J., Yin, Z., Griffin, W. L., Xia, M., Lin, A., & Zhang, H. (2018). Spongy texture in mantle clinopyroxene records decompression-induced melting. Lithos, 320–321, 144–154.
https://doi.org/10.1016/j.lithos.2018.08.035 - Rehfeldt, T., Obst, K., & Johansson, L. (2007). Petrogenesis of ultramafic and mafic xenoliths from Mesozoic basanites in southern Sweden: Constraints from mineral chemistry. International Journal of Earth Sciences, 96(3), 433–450.
https://doi.org/10.1007/s00531-006-0116-4 - Shaw, C. S. J. (2009). Textural development of amphibole during breakdown reactions in a synthetic peridotite. Lithos, 110(1), 215–228.
https://doi.org/10.1016/j.lithos.2009.01.002 - Shaw, C. S. J., & Dingwell, D. B. (2008). Experimental peridotite–melt reaction at one atmosphere: a textural and chemical study. Contributions to Mineralogy and Petrology, 155(2), 199–214.
https://doi.org/10.1007/s00410-007-0237-1 - Shaw, C. S. J., Heidelbach, F., & Dingwell, D. B. (2006). The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for “metasomatism” by the host lava. Contributions to Mineralogy and Petrology, 151(6), 681–697.
https://doi.org/10.1007/s00410-006-0087-2 - Shaw, C. S. J., & Klügel, A. (2002). The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral – melt reaction. Mineralogy and Petrology, 74(2), 163–187.
https://doi.org/10.1007/s007100200003 - Su, B. X., Zhang, H. F., Sakyi, P. A., Yang, Y. H., Ying, J. F., Tang, Y. J., Qin, K. Z., Xiao, Y., Zhao, X. M., Mao, Q., & Ma, Y. G. (2011). The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China. Contributions to Mineralogy and Petrology, 161(3), 465–482.
https://doi.org/10.1007/s00410-010-0543-x - Tappe, S. (2004). Mesozoic mafic alkaline magmatism of southern Scandinavia. Contributions to Mineralogy and Petrology, 148(3), 312–334.
https://doi.org/10.1007/s00410-004-0606-y - Tappe, S., Smart, K. A., Stracke, A., Romer, R. L., Prelević, D., & van den Bogaard, P. (2016). Melt evolution beneath a rifted craton edge: 40Ar/39Ar geochronology and Sr–Nd–Hf–Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic Shield. Geochimica et Cosmochimica Acta, 173, 1–36.
https://doi.org/10.1016/j.gca.2015.10.006