References
- Al-Baali A.A.G., Farid M.M.: Chapter 5, Thermal Sterilization of Food in Cans. In: Sterilization of Food in Retort Pouches, Food Engineering Series, Springer Science+Business Media, New York, NY, 2006, pp. 45–62, doi: 10.1007/0-387-311297_5.
- Banga J.R., Balsa-Canto E., Moles C.G., Alonso A.A.: Improving food processing using modern optimization methods. Trends Food Sci Technol 2003, 14, 131–144, doi: 10.1016/S0924-2244(03)00048-7.
- Barra–Carrasco J., Olguín–Araneda V., Plaza–Garrido A., Miranda–Cárdenas C., Cofré–Araneda G., Pizarro–Guajardo M., Sarker M.R., Paredes–Sabja D.: The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J Bacteriol 2013, 195, 3863–3875, doi: 10.1128/JB.00369-13.
- Benoit R.M.: Botulinum neurotoxin diversity from a genecentered view. Toxins 2018, 10, 310, doi: 10.3390/toxins10080310.
- Brown J.L., Tran-Dinh N., Chapman B.: Clostridium sporogenes PA 3679 and its uses in the derivation of thermal processing schedules for low-acid shelf-stable foods and as a research model for proteolytic Clostridium botulinum. J Food Prot 2012, 75, 779–792, doi: 10.4315/0362-028X.JFP-11-391.
- Brunt J., Van Vliet A.H.M., Carter A.T., Stringer S.C., Amar C., Grant K.A., Godbole G., Peck M.W.: Diversity of the genomes and neurotoxins of strains of Clostridium botulinum group I and Clostridium sporogenes associated with foodborne, infant and wound botulism. Toxins 2020, 12, 586, doi: 10.3390/toxins12090586.
- Brunt J., Plowman J., Gaskin D.J.H., Itchner M., Carter A.T., Peck M.W.: Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes presents novel insights into spore germination systems.PLOS Pathog 2014, 10, doi: 10.1371/journal.ppat.1004382.
- Cortés-Sánchez A.: About Clostridium botulinum, Fish and Tilapa, Mod Appl Sci 2021, 15, doi: 10.5539/mas.v15n3p1
- Doornmalen J.P.C.M., Kopinga K.: Temperature dependence of F-, D- and z-values used in steam sterilization processes. J Appl Microbiol 2009, 107, 1054–1060, doi: 10.1111/j.1365-2672.2009.04290.x.
- Grenda T., Kwiatek K., Goldsztejn M., Sapała M., Kozieł N., Domaradzki P.: Clostridia in insect processed animal proteins–is an epidemiological problem possible? Agriculture 2021, 11, 270, doi:10.2290/agriculture11030270.
- Hill K.K., Xie G., Foley B.T., Smith T.J., Munk A.C., Bruce D., Smith L.A., Brettin T.S., Detter J.C.: Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol 2009, 7, doi: 10.1186/1741-7007-7-66.
- Ismail I.M., Fahmy A., Azab A., Abadir M., Fateen S.E.,: Optimizing the sterilization process of canned food using temperature distribution studiem. IOSR-JAVS 2013, 6, 26–33, doi: 10.9790/2380-0642633.
- Johnson E.A., Bradshaw M.: Clostridium botulinum and its neurotoxins; a metabolic and cellular perspective. Toxicon 2001, 39, 1703–1722, doi: 10.1016/s0041-0101(01)00157-x.
- Lalitha K.V., Gopakumar K.: Growth and toxin production by Clostridium botulinum in fish (Mugil cephalus) and shrimp (Penaeus indicus) tissue homogenates stored under vacuum. Food Microbiol 2001, 18, 651–657, doi: 10.1006/fmic.2001.0433.
- Lonati D., Schicchi A., Crevani M., Buscaglia E., Scaravaggi G., Maida F., Cirronis M., Petrolini V.M., Locatelli C.A.: Foodborne botulism: clinical diagnosis and medical treatment. Toxins 2020, 12, 509, doi: 10.3390/toxins12080509.
- Mah J.H., Kang D.H., Tang J.: Comparison of viability and heat resistance of Clostridium sporogenes stored at different temperatures. J Food Sci 2009, 74, 23–27, doi: 10.1111/j.1750-3841.2008.00984.x.
- Maikanov B., Mustafina R., Auteleyeva L., Wiśniewski J., Anusz K., Grenda T., Kwiatek K., Goldsztejn M., Grabczak M.: Clostridium botulinum and Clostridium perfringens occurrence in Kazakh honey samples. Toxins 2019, 11, 472, doi: 10.3390/toxins11080472.
- Nawrocki E.M., Bradshaw M., Johnson E.A.: Botulinum neurotoxin–encoding plasmids can be conjugatively transferred to diverse clostridial strains. Sci Rep 2018, 8, doi: 10.1038/s41598-018-21342-9.
- Num S.M., Useh N.M.: Clostridium: pathogenic roles, industrial uses and medicinal prospects of natural products as ameliorative agents against pathogenic species. JJBS 2014, 7, 81–94, doi: 10.12816/0008220.
- Peck M., Smith T.J., Anniballi F., Austin J.W., Bano L., Bradshaw M., Cuervo P., Cheng L.W., Derman Y., Dorner B.G., Fisher A., Hill K.K., Kalb S.R., Korkeala H., Lindström M., Lista F., Lúquez C., Mazuet C., Pirazzini M., Popoff M.R., Rossetto O., Rummel A., Sesardic D., Singh B.R., Stringer S.C.: Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins 2017, 18, doi: 10.3390/toxins9010038.
- Peck M.W., Van Vliet A.H.M.: Impact of Clostridium botulinum genomic diversity on food safety. Curr Opin Food Sci 2016, 10, 52–59, doi: 10.1016/j.cofs.2016.09.006.
- Poortmans M., Vanoirbeek K., Dorner M.B., Michiels C.W.: Selection and development of nontoxic nonproteolytic Clostridium botulinum surrogate strains for food challenge testing. Foods 2022, 11, doi: 10.3390/foods11111577.
- Poulain B., Popoff M.R.: Why are botulinum neurotoxin-producing bacteria so diverse and botulinum neurotoxins so toxic? Toxins 2019, 11, 34, doi: 10.3390/toxins11010034.
- Rahman M.S.: Canning and Sterilization of Foods. In: Handbook of Food Preservation. CRC Press Taylor&Francis Group, Danvers, 2007, pp. 585-625.
- Raphael B.H., Andreadis J.D.: Real-time PCR detection of the nontoxic nonhemagglutinin gene as a rapid screening method for bacterial isolates harboring the botulinum neurotoxin (A–G) gene complex. J. Microbiol Methods 2007, 71, 343–346, doi: 10.1016/j.mimet.2007.09.016.
- Raseta M., Brankovic-Lazic I., Mrdovic B., Baltic B., Zsolt B., Djordjevic V.: Optimization of liver pate sterilization from the aspect of preserving nutritional value and ensuring food safety. Meat Technology 2019, 60, 97–105, doi: 10.18485/meattech.2019.60.2.4.
- Reddy N.R., Skinner G.E., Oh S.: Clostridium botulinum and its control in low-acid canned foods. Food Sci Biotechnol 2006, 15, 499–505.
- Saeed E.M.A.: Studies on Isolation and Identification of Clostridium botulinum Investigating Field Samples Specially from Equine Grass Sickness Cases, Doctoral dissertation, Faculty of Agriculture, Georg-August-University Göttingen, Göttingen, 2004
- Simpson L.: The life history of a botulinum toxin molecule. Toxicon 2013, 68, 40–59, doi: 10.1016/j.toxicon.2013.02.014.
- Smith T.J., Hill K.K., Raphael B.H.: Historical and current perspectives on Clostridium botulinum diversity. Res Microbiol 2015, 166, 290–302, doi: 10.1016/j.resmic.2014.09.007.
- Smith T.J., Tian R., Imanian B., Williamson Ch.H.D., Johnson S.L., Daligault H.E., Schill K.M.: Integration of complete plasmids containing bont genes into chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins 2021, 13, 473, doi: 10.3390/toxins13070473.
- Stersky A., Todd E., Pivnick H.: Food poisoning associated with post-process leakage (PPL) in canned foods. J Food Prot 1980, 43, 465–476, doi: 10.4315/0362-028X-43.6.465.
- Sumner J., Ross T.: A semi-quantitative seafood safety risk assessment. Int J Food Microbiol 2002, 25, 55–59, doi: 10.1016/s0168-1605(02)00062-4.
- Taylor R.H., Dunn M.L., Ogden L.V., Jefferies L.K., Eggett D.L., Steele F.M.: Conditions associated with Clostridium sporogenes growth as a surrogate for Clostridium botulinum in nonthermally processed canned butter. J Dairy Sci 2013, 96, 2754–2764, doi: 10.3168/jds.2012-6209.
- Valentas K.J., Rotstein E., Singh R.P (red).: Chapter 2, Sterilization Process Engineering. In: Handbook of Food Engineering Practice. CRC Press LLC, Salem, 1997, pp. 46–78, doi: 10.1201/9780367802110.
- Vaneechoutte M., Cartwright C.P., Williams E.C., Jäger B., Tichy H.V., de Baere T., de Rouck A., Verschraegen G.: Evaluation of 16S rRNA gene restriction analysis for the identification of cultured organisms of clinically important Clostridium species. Anaerobe 1996, 4, 249–256, doi: 0.1128/JCM.42.5.2197–2202.2004.
- Weigand MR., Pena-Gonzales A., Shirey T.B., Broeker R.G., Ishaq M.K., Konstantinidis K.T., Raphael B.H.: Implications of genome-based discrimination between Clostridium botulinum group I and Clostridium sporogenes strains for bacterial taxonomy. Appl Environ Microbiol 2015, 81, 5420–5429, doi: 10.1128/AEM.01159-15.
- Wentz T.G., Tremblay B.J.M., Bradshaw M., Doxey A.C., Sharma S.K., Sauer J.D., Pellett S.: Endogenous CRISPR-Cas systems in group I Clostridium botulinum and Clostridium sporogenes do not directly target the botulinum neurotoxin gene cluster. Front Microbiol 2022, 12, doi: 10.3389/fmicb.2021.787726.
- Williamson Ch.H.D.,Vazquez A.J., Hill K., Smith T.J., Nottingham R., Stone N.E., Sobek C.J., Cocking J.H., Fernández R.A., Caballero P.A., Leiser O.P., Kelm P., Sahl J.W: Differentiating botulinum neurotoxin- producing clostridia with a simple, multiplex PCR Assay. Appl Environ Microbiol 2017, 83, doi: 10.1128/AEM.00806-17.
- Wrzosek A.: Weitere Untersuchungen uiber die Zuchtung von obli-gatorischen Anaeroben in a&rober Weise. Cent. f. Bakt. Abt. I. Orig. 1907, xliv, 607–616.