Have a personal or library account? Click to login
Response of Fresh-Cut Iceberg Lettuce to Fumigation with Botanical Essential Oils Cover

Response of Fresh-Cut Iceberg Lettuce to Fumigation with Botanical Essential Oils

Open Access
|Dec 2023

References

  1. Antunes M.D.C., Cavaco A.M. 2010. The use of essential oils for postharvest decay control. A Review. Flavour and Fragrance Journal 25(5): 351–366. DOI: 10.1002/ffj.1986.
  2. Antunes M.D., Gago C.M., Cavaco A.M., Miguel M.G. 2012. Edible coatings enriched with essential oils and their compounds for fresh and fresh-cut fruit. Recent Patents on Food, Nutrition and Agriculture 4(2): 114–122. DOI: 10.2174/2212798411204020114.
  3. Ayala-Zavala J.F., González-Aguilar G.A., Del-Toro-Sánchez L. 2009. Enhancing safety and aroma appealing of fresh-cut fruits and vegetables using the antimicrobial and aromatic power of essential oils. Journal of Food Science 74(7): 84–91. DOI: 10.1111/j.1750-3841.2009.01294.x.
  4. de Azeredo G.A., Stamford T.L.M., Nunes P.C., Neto N.J.G., de Oliveira M.E.G., de Souza E.L. 2011. Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochtonous microflora associated with minimally processed vegetables. Food Research International 44(5): 1541–1548. DOI: 10.1016/j.foodres.2011.04.012.
  5. Bajpai V.K., Baek K.-H., Kang S.C. 2012. Control of Salmonella in foods by using essential oils: A review. Food Research International 45(2): 722–734. DOI: 10.1016/j.foodres.2011.04.052.
  6. Bakkali F., Averbeck S., Averbeck D., Idaomar M. 2008. Biological effects of essential oils – A review. Food and Chemical Toxicology 46(2): 446–475. DOI: 10.1016/j.fct.2007.09.106.
  7. Balali G.I., Yar D.D., Dela V.G.A., Adjei-Kusi P. 2020. Microbial contamination, an increasing treat to the consumption of fresh fruits and vegetables in today's world. International Journal of Microbiology 2020; 3029295; 13 p. DOI: 10.1155/2020/3029295.
  8. Burt S. 2004. Essential oils: their antibacterial properties and potential application in foods – a review. Journal of Food Microbiology 94(3): 223–253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
  9. Calo J.R., Crandall P.G., O'Bryan C.A., Ricke S.C. 2015. Essential oils as antimicrobials in food system – A review. Food Control 54: 111–119. DOI: 10.1016/j.foodcont.2014.12.040.
  10. Castro-Ibáñez I., Gil M.I., Allende A. 2017. Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT – Food Science and Technology 85B: 284–292. DOI: 10.1016/j.lwt.2016.11.073.
  11. Ding P., Lee Y.L. 2019. Use of essential oils for prolonging postharvest life of fresh fruits and vegetables. International Food Research Journal 26(2): 363–366. http://psasir.upm.edu.my/id/eprint/82686/
  12. Dorman H.J.D., Deans S.G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology 88(2): 308–316. DOI: 10.1046/j.1365-2672.2000.00969.x.
  13. Farzaneh M., Kiani H., Sharifi R., Reisi M., Hadian J. 2015. Chemical composition and antifungal effects of three species of Satureja (S. hortensis, S. spicigera. S. khuzistanica) essential oils on the main pathogens of strawberry fruit. Postharvest Biology and Technology 109: 145–151. DOI: 10.1016/j.postharvbio.2015.06.014.
  14. Guo Q., Du G., Jia H., Fan Q., Wang Z., Gao Z. et al. 2021. Essential oils encapsulated by biopolymers as antimicrobials in fruits and vegetables: A review. Food Bioscience 44A; 101367; 9 p. DOI: 10.1016/j.fbio.2021.101367.
  15. Gutierrez J., Bourke P., Lonchamp J., Barry-Ryan C. 2009. Impact of plant essential oil microbiological, organoleptic and quality markers of minimally processed vegetables. Innovative Food Science and Emerging Technologies 10(2): 195–202. DOI: 10.1016/j.ifset.2008.10.005.
  16. Gutierrez J., Rodriguez G., Barry-Ryan C., Bourke P. 2008. Efficacy of plant essential oils against food-borne pathogens and spoilage bacteria associated with ready-to-eat vegetables: antimicrobial and sensory screening. Journal of Food Protection 71(9): 1846–1854. DOI: 10.4315/0362-028x-71.9.1846.
  17. Holley R.A., Patel D. 2005. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology 22(4): 273–292. DOI: 10.1016/j.fm.2004.08.006.
  18. ISO 13299:2016. Sensory analysis – Methodology – General guidance for establishing a sensory profile. https://www.iso.org/standard/58042.html
  19. Kraśniewska K., Kosakowska O., Pobiega K., Gniewosz M. 2020. The influence of two-component mixtures from Spanish origanum oil with Spanish marjoram oil or coriander oil on antilisterial activity and sensory quality of fresh cut vegetable mixture. Foods 9(12); 1740; 13 p. DOI: 10.3390/foods9121740.
  20. Laird K., Phillips C. 2011. Vapour phase: a potential future use for essential oils as antimicrobials? Letters in Applied Microbiology 54(3): 169–174. DOI: 10.1111/j.1472-765x.2011.03190.x.
  21. Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G.-J.E. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology 91(3): 453–462. DOI: 10.1046/j.1365-2672.2001.01428.x.
  22. Lanciotti R., Gianotti A., Patrignani F., Belletti N., Guerzoni M.E., Gardini F. 2004. Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends in Food Science and Technology 15(3–4): 201–208. DOI: 10.1016/j.tifs.2003.10.004.
  23. Liolios C.C., Gortzi O., Lalas S., Tsaknis J., Chinou I. 2009. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chemistry 112(1): 77–83. DOI: 10.1016/j.foodchem.2008.05.060.
  24. Mari M., Bautista-Baños S., Sivakumar D. 2016. Decay control in the postharvest system: Role of microbial and plant volatile organic compounds. Post-harvest Biology and Technology 122: 70–81. DOI: 10.1016/j.postharvbio.2016.04.014.
  25. Mousavizadeh S.J., Sedaghathoor S., Khorami H. 2011. Essential oils as reducing agents of cabbage peroxidase. Scientia Horticulturae 128(4): 388–392. DOI: 10.1016/j.scienta.2011.01.027.
  26. Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12): 1451–1474. DOI: 10.3390/ph6121451.
  27. Patrignani F., Siroli L., Serrazanetti D.I., Gardini F., Lanciotti R. 2015. Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends in Food Science and Technology 46(2B): 311–319. DOI: 10.1016/j.tifs.2015.03.009.
  28. Pintore G., Usai M., Bradesi P., Juliano C., Boatto G., Tomi F. et al. 2002. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour and Fragrance Journal 17(1): 15–19. DOI: 10.1002/ffj.1022.
  29. PN-EN ISO 8589:2010/A1:2014-07. Sensory analysis – General guidelines for the design of sensory analysis https://sklep.pkn.pl/pn-en-iso-8589-2010-a1-2014-07e.html
  30. PN-EN ISO 4833-2:2013-12. Microbiology of the food chain – Horizontal method for the enumeration of microorganisms – Part 2: Enumeration by surface seeding at 30 degrees. https://sklep.pkn.pl/pn-eniso-4833-2-2013-12e.html
  31. PN-EN ISO 8586:2014-03. Sensory analysis – General guidelines for the selection, training and monitoring of selected assessors and expert sensory assessors. https://sklep.pkn.pl/pn-en-iso-8586-2014-03e.html
  32. PN-ISO 21527-1:2009. Mikrobiologia żywności i pasz – Horyzontalna metoda oznaczania liczby drożdży i pleśni – Część 1: Metoda liczenia kolonii w produktach o aktywności wody wyższej niż 0,95. https://sklep.pkn.pl/pn-iso-21527-1-2009p.html [in Polish]
  33. Ponce A., Roura S.I., Moreira M.R. 2011. Essential oils as biopreservatives: Different methods for the technological application in lettuce leaves. Journal of Food Science 76(1): 34–40. DOI: 10.1111/j.1750-3841.2010.01880.x.
  34. Rathod N.B., Kulawik P., Ozogul F., Regenstein J.M., Ozogul Y. 2021. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends in Food Science and Technology 116: 733–748. DOI: 10.1016/j.tifs.2021.08.023.
  35. Rico D., Martín-Diana A.B., Barat J.M., Barry-Ryan C. 2007. Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends in Food Science and Technology 18(7): 373–386. DOI: 10.1016/j.tifs.2007.03.011.
  36. Sakkas H., Papadopoulou C. 2017. Antimicrobial activity of basil, oregano, and thyme essential oils. Journal of Microbiology and Biotechnology 27(3): 429–438. DOI: 10.4014/jmb.1608.08024.
  37. Scollard J., Francis G.A., O'Beirne D. 2013. Some conventional and latent anti-listerial effects of essential oils, herbs, carrot and cabbage in fresh-cut vegetable systems. Postharvest Biology and Technology 77: 87–93. DOI: 10.1016/j.postharvbio.2012.11.011.
  38. Scollard J., McManamon O., Schmalenberger A. 2016. Inhibition of Listeria monocytogenes growth on fresh-cut produce with thyme essential oil and essential oil compound verbenone. Postharvest Biology and Technology 120: 61–68. DOI: 10.1016/j.post-harvbio.2016.05.005.
  39. Soković M., Glamočlija J., Marin P.D., Brkić D., van Griensven L.J.L.D. 2010. Antibacterial effect of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 15(11): 7532–7546. DOI: 10.3390/molecules15117532.
  40. Tripathi P., Dubey N.K., Shukla A.K. 2008. Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World Journal of Microbiology and Biotechnology 24: 39–46. DOI: 10.1007/s11274-007-9435-2.
  41. Uyttendaele M., Neyts K., Vanderswalmen H., Notebaert E., Debevere J. 2004. Control of Aeromonas on minimally processed vegetables by decontamination with lactic acid, chlorinated water, or thyme essential oil solution. International Journal of Food Microbiology 90(3): 263–271. DOI: 10.1016/s0168-1605(03)00309-x.
  42. Viacava G.E., Ayala-Zavala J.F., González-Aguilar G.A., Ansorena M.R. 2018. Effect of free and microencapsulated thyme essential oil on quality attributes of minimally processed lettuce. Postharvest Biology and Technology 145: 125–133. DOI: 10.1016/j.postharvbio.2018.07.004.
  43. Walczak M., Michalska-Sionkowska M., Olkiewicz D., Tarnawska P., Warżyńska O. 2021. Potential of carvacrol and thymol in reducing biofilm formation on technical surfaces. Molecules 26(9); 2723; 12 p. DOI: 10.3390/molecules26092723.
  44. Xylia P., Chrysargyris A., Botsaris G., Tzortzakis N. 2017. Potential application of spearmint and lavender essential oils for assuring endive quality and safety. Crop Protection 102: 94–103. DOI: 10.1016/j.cropro.2017.08.015.
  45. Xylia P., Clark A., Chrysargyris A., Romanazzi G.,Tzortzakis N. 2019. Quality and safety attributes on shredded carrots by using Origanum majorana and ascorbic acid. Postharvest Biology and Technology 155: 120–129. DOI: 10.1016/j.postharvbio.2019.05.015.
  46. Xylia P., Chrysargyris A., Tzortzakis N. 2021. The combined and single effect of marjoram essential oil, ascorbic acid, and chitosan on fresh-cut lettuce preservation. Foods 10(3); 575; 21 p. DOI: 10.3390/foods10030575.
  47. Yousuf B., Wu S., Siddiqui M.W. 2021. Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce. Trends in Food Science and Technology 108: 245–257. DOI: 10.1016/j.tifs.2021.01.016.
DOI: https://doi.org/10.2478/johr-2023-0032 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 105 - 114
Submitted on: Aug 1, 2023
Accepted on: Nov 1, 2023
Published on: Dec 29, 2023
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Maria Grzegorzewska, Magdalena Szczech, Beata Kowalska, Anna Wrzodak, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution 4.0 License.