Have a personal or library account? Click to login
Image partitioning with windowed and panoramic configuration for passive 360-degree camera in military unmanned ground vehicle: A machine learning-based detection framework
Andersson, C. A., Halme, K., Laine, M., Hulkko, V., & Virtanen, K. (2024). Effectiveness of an expendable unmanned ground vehicle stalling a mechanized infantry company’s primary combat units – A virtual simulation experiment. Journal of Field Robotics, 42, pp. 1125–1142. doi: 10.1002/rob.22442
Army Recognition. (2023a). New Unmanned Ground Vehicles UGV Produced in Russia – Defense News August 2023 Global Security Army Industry – Defense Security Global News Industry Army Year 2023 – Archive News Year – armyrecognition.com. Available at https://www.armyrecognition.com/defense_news_august_2023_global_security_army_industry/new_unmanned_ground_vehicles_ugv_produced_in_russia.html [accessed 23 July, 2024].
Army Recognition. (2023b). Ukraine to Deploy Ironclad Articulated UGV in Combat Operations – Ukraine – Russia Conflict War 2022 – Analysis Focus Army Defence Military Industry Army – armyrecognition.com. Available at https://www.armyrecognition.com/focus-analysis-conflicts/army/conflicts-in-the-world/russia-ukraine-war-2022/ukraine-to-deploy-articulated-ironclad-ugv-in-combat-operations?highlight=WyJpcm9uY2xhZCJd [accessed 23 July, 2024].
Askew, J. (2023). How the Ukraine War is Driving Technological Innovation – euronews.com. Available at https://www.euronews.com/next/2023/09/27/drones-and-robots-how-the-ukraine-war-is-driving-technological-innovation [accessed 23 July, 2024].
Atherton, K. D. (2019). Beetle-Like Iranian Robots can Roll Under Tanks – c4isrnet.com. Available at https://www.c4isrnet.com/unmanned/2019/10/08/beetle-like-iranian-robots-roll-under-tanks/ [accessed 22 July, 2024].
Baker, J. (2023). Ukraine Eyes up New ‘Funnel Web’ Missile-Launcher to Sneak behind Enemy Lines – thesun.co.uk. Available at https://www.thesun.co.uk/news/23816980/missile-launching-robots-key-ukraine-war/ [accessed 22 July, 2024].
Bureau. (2023). Ukraine, Russia Rush to Develop Ground Mobile Mines – defensemirror.com. Available at https://www.defensemirror.com/news/34093/Ukraine__Russia_Rush_to_Develop_Ground_Mobile_Mines [accessed 23 July, 2024].
Gordon, A. (2022). Grounded in reality: Charting the Uncrewed Land Systems Market - Global Defence Technology – Issue 138 – December 2022 – defence.nridigital.com. Available at https://defence.nridigital.com/global_defence_technology_dec22/grounded_in_reality_charting_the_uncrewed_land_systems_market [accessed 23 July, 2024].
Graswald, M., Gutser, R., Breiner, J., Grabner, F., Lehmann, T., & Oelerich, A. (2019). Defeating modern armor and protection systems. Hypervelocity Impact Symposium, Vol. 883556. American Society of Mechanical Engineers, p. V001T03A004.
Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., et al. (2022). A survey on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), pp. 87–110. doi: 10.1109/TPAMI.2022.3152247
Hemminki, P., Andersson, C., Nieminen, M., & Haapamäki, T. (2022). (In Finnish) Autonomia Taistelukentällä – Tulevaisuusorientoitunut Tutkimus. Puolustustutkimuksen Vuosikirja 2022.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. In: Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14. Springer, pp. 630–645.
Jafarzadeh, P., Zelioli, L., Farahnakian, F., Nevalainen, P., Heikkonen, J., Hemminki, P., et al. (2023). Real-time military tank detection using YOLOv5 implemented on raspberry pi. In: 2023 4th International Conference on Artificial Intelligence, Robotics and Control (AIRC). IEEE, pp. 20–26. doi: 10.1109/AIRC57904.2023.10303260
Kaur, P., Khehra, B. S., & Mavi, E. B. S. (2021). Data augmentation for object detection: A review. In: 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, pp. 537–543.
Kirill, R. (2022). Self-propelled mine Gnom Kamikaze: Ukrainian implementation of an unsuccessful concept – eu.topwar.ru. Available at https://en.topwar.ru/201057-samohodnaja-mina-gnome-kamikaze-ukrainskaja-realizacija-neudachnoj-koncepcii.html [accessed 23 July, 2024].
Kosonen, P. (2020). Autonomous Robots Out in the Wild – A Software Engineering Challenge. Available at https://medium.com/starshiptechnologies/running-autonomous-robots-on-city-streets-is-very-much-a-software-engineering-challenge-66927869090a [accessed 12 July, 2024].
Kulchandani, J. S., & Dangarwala, K. J. (2015). Moving object detection: Review of recent research trends. In: 2015 International Conference on Pervasive Computing (ICPC). IEEE, pp. 1–5.
Leiss, P. (2018). The Functional Components of Autonomous Vehicles. Available at https://www.robsonforensic.com/articles/autonomous-vehicles-sensors-expert [accessed 12 July, 2024].
Liang, S., Wang, W., Chen, R., Liu, A., Wu, B., & Chang, E. C., et al. (2024). Object detectors in the open environment: Challenges, solutions, and outlook. arXiv preprint arXiv:2403.16271.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., & Fu, C. Y., et al. (2016). SSD: Single shot multibox detector. In: European Conference on Computer Vision, Springer. doi: 10.48550/arXiv.1512.02325.
Lubenets, A. (2021). The Story Behind the Creation of Yandex’s Delivery Robot. Available at https://medium.com/yandex-self-driving-car/the-story-behind-the-creation-of-yandexs-delivery-robot-e07017940589 [accessed 12 July, 2024].
Malyasov, D. (2023). Ukrainian Army Uses Drones as Remote Mine-Laying System – defence-blog.com. Available at https://defence-blog.com/ukrainian-army-uses-drones-as-remote-mine-laying-system/ [accessed 23 July, 2024].
MalyasovD.2023Ukrainian Army Uses Drones as Remote Mine-Laying System – defence-blog.comAvailable at https://defence-blog.com/ukrainian-army-uses-drones-as-remote-mine-laying-system/ [accessed 23 July, 2024]
Mankins, J. C. (1995). Technology readiness levels. White Paper, April 6(1995), p. 1995. Available: https://spacese.spacegrant.org/SEModules/Technology%20Mods/Mankins_trl.pdf [Accessed 20.07.2025].
Mansikka, H., Virtanen, K., & Harris, D. (2023). What we got here, is a failure to coordinate: Implicit and explicit coordination in air combat. Journal of Cognitive Engineering and Decision Making, 17, pp. 279–293. doi: 10.1177/15553434231179566
Mizokami, K. (2018). Russia’s Tank Drone Performed Poorly in Syria – popularmechanics.com. Available at https://www.popularmechanics.com/military/weapons/a21602657/russias-tank-drone-performed-poorly-in-syria/ [accessed 23 July, 2024].
Naik, B. T., & Hashmi, M. F. (2023). YOLOv3-SORT: Detection and tracking player/ball in soccer sport. Journal of Electronic Imaging, 32(1), pp. 011003–011003. doi: 10.1117/1.JEI.32.1.011003
Nguyen, P. T., Westerlund, T., & Peña Queralta, J. (2023). Vision-based safe autonomous UAV docking with panoramic sensors. Frontiers in Robotics and AI, 10, p. 1223157. doi: 10.3389/frobt.2023.1223157
Picam360 Developer Community, P. I. (2023). PICAM360. Available at https://store.picam360.com/store#!/PICAM360-4KHDR/p/144496447/category=0 [accessed 8 June, 2023].
Premachandra, C., Ueda, S., & Suzuki, Y. (2020). Detection and tracking of moving objects at road intersections using a 360-degree camera for driver assistance and automated driving. 8, pp. 135652–135660. doi: 10.1109/ACCESS.2020.3011430
Rashed, H., Mohamed, E., Sistu, G., Kumar, V. R., Eising, C., & El-Sallab, A., et al. (2021). Generalized object detection on fisheye cameras for autonomous driving: Dataset, representations and baseline. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. IEEE, pp. 2272–2280.
Ren, S., He, K., Girshick, R. B., & Sun, J. (2016). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, IEEE. doi: 10.1109/TPAMI.2016.2577031.
Schueler, K., Weiherer, T., Bouzouraa, E., & Hofmann, U. (2012). 360 degree multi sensor fusion for static and dynamic obstacles. In: 2012 IEEE Intelligent Vehicles Symposium. IEEE, pp. 692–697.
Shmigel, P. (2023). Ukraine to Deploy Robots against Russian Troops – kyivpost.com. Available at https://www.kyivpost.com/post/20181 [accessed 23 July, 2024].
ShmigelP.2023Ukraine to Deploy Robots against Russian Troops – kyivpost.comAvailable at https://www.kyivpost.com/post/20181 [accessed 23 July, 2024]
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), pp. 1–48. doi: 10.1186/s40537-019-0197-0
Sutton, H. I. (2023). World’s First Specialized Explosive Naval Drone Unit Formed in Ukraine – Naval News – navalnews.com. Available at https://www.navalnews.com/naval-news/2023/08/worlds-first-specialized-explosive-naval-drone-unit-formed-in-ukraine/ [accessed 22 July, 2024].
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, PMLR. doi: 10.48550/arXiv.1905.11946.
Vijayakumar, A., & Vairavasundaram, S. (2024). YOLO-based object detection models: A review and its applications. Multimedia Tools and Applications, 83(35), pp. 83535–83574. doi: 10.1007/s11042-024-18872-y
Wang, K. H., & Lai, S. H. (2019). Object detection in curved space for 360-degree camera. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. doi: 10.1109/ICASSP.2019.8683093, pp. 3642–3646.
Wolf, M. T., Assad, C., Kuwata, Y., Howard, A., Aghazarian, H., Zhu, D., et al. (2010). 360-degree visual detection and target tracking on an autonomous surface vehicle. Journal of Field Robotics, 27(6), pp. 819–833. doi: 10.1002/rob.20371
Xu, Y., Fu, M., Wang, Q., Wang, Y., Chen, K., Xia, G.-S., et al. (2020). Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4), pp. 1452–1459. doi: 10.1109/TPAMI.2020.2974745
Yang, Y., Tang, D., Wang, D., Song, W., Wang, J., & Fu, M. (2020). Multi-camera visual SLAM for off-road navigation. Robotics and Autonomous Systems, 128, p. 103505. doi: 10.1016/j.robot.2020.103505
Yeong, D. J., Velasco-Hernandez, G., Barry, J., & Walsh, J. (2021). Sensor and sensor fusion technology in autonomous vehicles: A review. Sensors, 21(6), p. 2140. doi: 10.3390/s21062140
Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2022). Machine learning testing: Survey, landscapes and horizons. IEEE Transactions on Software Engineering, 48(1), pp. 1–36. doi: 10.1109/TSE.2019.2962027
Zhang, Y., Xiao, X., & Yang, X. (2017). Real-time object detection for 360-degree panoramic image using cnn. In: 2017 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, pp. 18–23.