Have a personal or library account? Click to login
Image partitioning with windowed and panoramic configuration for passive 360-degree camera in military unmanned ground vehicle: A machine learning-based detection framework Cover

Image partitioning with windowed and panoramic configuration for passive 360-degree camera in military unmanned ground vehicle: A machine learning-based detection framework

Open Access
|Oct 2025

References

  1. Andersson, C. (2021). The unmanned ground vehicles to be used in future military operations. Tiede ja ase, 2021(79), 85–89 ISSN: 0358-8882
  2. Andersson, C. A., Halme, K., Laine, M., Hulkko, V., & Virtanen, K. (2024). Effectiveness of an expendable unmanned ground vehicle stalling a mechanized infantry company’s primary combat units – A virtual simulation experiment. Journal of Field Robotics, 42, pp. 1125–1142. doi: 10.1002/rob.22442
  3. Army Recognition. (2023a). New Unmanned Ground Vehicles UGV Produced in Russia – Defense News August 2023 Global Security Army Industry – Defense Security Global News Industry Army Year 2023 – Archive News Year – armyrecognition.com. Available at https://www.armyrecognition.com/defense_news_august_2023_global_security_army_industry/new_unmanned_ground_vehicles_ugv_produced_in_russia.html [accessed 23 July, 2024].
  4. Army Recognition. (2023b). Ukraine to Deploy Ironclad Articulated UGV in Combat Operations – Ukraine – Russia Conflict War 2022 – Analysis Focus Army Defence Military Industry Army – armyrecognition.com. Available at https://www.armyrecognition.com/focus-analysis-conflicts/army/conflicts-in-the-world/russia-ukraine-war-2022/ukraine-to-deploy-articulated-ironclad-ugv-in-combat-operations?highlight=WyJpcm9uY2xhZCJd [accessed 23 July, 2024].
  5. Askew, J. (2023). How the Ukraine War is Driving Technological Innovation – euronews.com. Available at https://www.euronews.com/next/2023/09/27/drones-and-robots-how-the-ukraine-war-is-driving-technological-innovation [accessed 23 July, 2024].
  6. Atherton, K. D. (2019). Beetle-Like Iranian Robots can Roll Under Tanks – c4isrnet.com. Available at https://www.c4isrnet.com/unmanned/2019/10/08/beetle-like-iranian-robots-roll-under-tanks/ [accessed 22 July, 2024].
  7. Baker, J. (2023). Ukraine Eyes up New ‘Funnel Web’ Missile-Launcher to Sneak behind Enemy Lines – thesun.co.uk. Available at https://www.thesun.co.uk/news/23816980/missile-launching-robots-key-ukraine-war/ [accessed 22 July, 2024].
  8. Bureau. (2023). Ukraine, Russia Rush to Develop Ground Mobile Mines – defensemirror.com. Available at https://www.defensemirror.com/news/34093/Ukraine__Russia_Rush_to_Develop_Ground_Mobile_Mines [accessed 23 July, 2024].
  9. Demir, B., Ergunay, S., Nurlu, G., Popovic, V., Ott, B., Wellig, P., et al. (2020). Real-time high-resolution omnidirectional imaging platform for drone detection and tracking. Journal of Real-Time Image Processing, 17(5), pp. 1625–1635. doi: 10.1007/s11554-019-00921-7
  10. Gordon, A. (2022). Grounded in reality: Charting the Uncrewed Land Systems Market - Global Defence Technology – Issue 138 – December 2022 – defence.nridigital.com. Available at https://defence.nridigital.com/global_defence_technology_dec22/grounded_in_reality_charting_the_uncrewed_land_systems_market [accessed 23 July, 2024].
  11. Graswald, M., Gutser, R., Breiner, J., Grabner, F., Lehmann, T., & Oelerich, A. (2019). Defeating modern armor and protection systems. Hypervelocity Impact Symposium, Vol. 883556. American Society of Mechanical Engineers, p. V001T03A004.
  12. Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., et al. (2022). A survey on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), pp. 87–110. doi: 10.1109/TPAMI.2022.3152247
  13. Heikkila, H., Eskelinen, P., Hautala, P., & Ruoskanen, J. (2004). Upgrading armored vehicle sensor systems. IEEE Aerospace and Electronic Systems Magazine, 19(1), pp. 26–32. doi: 10.1109/MAES.2004.1263989
  14. Hemminki, P., Andersson, C., Nieminen, M., & Haapamäki, T. (2022). (In Finnish) Autonomia Taistelukentällä – Tulevaisuusorientoitunut Tutkimus. Puolustustutkimuksen Vuosikirja 2022.
  15. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. In: Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14. Springer, pp. 630–645.
  16. Jafarzadeh, P., Zelioli, L., Farahnakian, F., Nevalainen, P., Heikkonen, J., Hemminki, P., et al. (2023). Real-time military tank detection using YOLOv5 implemented on raspberry pi. In: 2023 4th International Conference on Artificial Intelligence, Robotics and Control (AIRC). IEEE, pp. 20–26. doi: 10.1109/AIRC57904.2023.10303260
  17. Joshi, H., & Katare, L. J. (2024). Unmanned Ground Vehicles (UGVs) Market Overview 2030, Size, Share, Growth, Industry, Growth – marketresearchfuture.com. Available at https://www.marketresearchfuture.com/reports/unmanned-ground-vehicles-market-10120 [accessed 23 July, 2024].
  18. Kaur, P., Khehra, B. S., & Mavi, E. B. S. (2021). Data augmentation for object detection: A review. In: 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, pp. 537–543.
  19. Kirill, R. (2022). Self-propelled mine Gnom Kamikaze: Ukrainian implementation of an unsuccessful concept – eu.topwar.ru. Available at https://en.topwar.ru/201057-samohodnaja-mina-gnome-kamikaze-ukrainskaja-realizacija-neudachnoj-koncepcii.html [accessed 23 July, 2024].
  20. Kosonen, P. (2020). Autonomous Robots Out in the Wild – A Software Engineering Challenge. Available at https://medium.com/starshiptechnologies/running-autonomous-robots-on-city-streets-is-very-much-a-software-engineering-challenge-66927869090a [accessed 12 July, 2024].
  21. Kulchandani, J. S., & Dangarwala, K. J. (2015). Moving object detection: Review of recent research trends. In: 2015 International Conference on Pervasive Computing (ICPC). IEEE, pp. 1–5.
  22. Leiss, P. (2018). The Functional Components of Autonomous Vehicles. Available at https://www.robsonforensic.com/articles/autonomous-vehicles-sensors-expert [accessed 12 July, 2024].
  23. Liang, S., Wang, W., Chen, R., Liu, A., Wu, B., & Chang, E. C., et al. (2024). Object detectors in the open environment: Challenges, solutions, and outlook. arXiv preprint arXiv:2403.16271.
  24. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., & Fu, C. Y., et al. (2016). SSD: Single shot multibox detector. In: European Conference on Computer Vision, Springer. doi: 10.48550/arXiv.1512.02325.
  25. Lubenets, A. (2021). The Story Behind the Creation of Yandex’s Delivery Robot. Available at https://medium.com/yandex-self-driving-car/the-story-behind-the-creation-of-yandexs-delivery-robot-e07017940589 [accessed 12 July, 2024].
  26. Malyasov, D. (2023). Ukrainian Army Uses Drones as Remote Mine-Laying System – defence-blog.com . Available at https://defence-blog.com/ukrainian-army-uses-drones-as-remote-mine-laying-system/ [accessed 23 July, 2024].
    MalyasovD. 2023 Ukrainian Army Uses Drones as Remote Mine-Laying System – defence-blog.com Available at https://defence-blog.com/ukrainian-army-uses-drones-as-remote-mine-laying-system/ [accessed 23 July, 2024]
  27. Mankins, J. C. (1995). Technology readiness levels. White Paper, April 6(1995), p. 1995. Available: https://spacese.spacegrant.org/SEModules/Technology%20Mods/Mankins_trl.pdf [Accessed 20.07.2025].
  28. Mansikka, H., Virtanen, K., & Harris, D. (2023). What we got here, is a failure to coordinate: Implicit and explicit coordination in air combat. Journal of Cognitive Engineering and Decision Making, 17, pp. 279–293. doi: 10.1177/15553434231179566
  29. Mizokami, K. (2018). Russia’s Tank Drone Performed Poorly in Syria – popularmechanics.com. Available at https://www.popularmechanics.com/military/weapons/a21602657/russias-tank-drone-performed-poorly-in-syria/ [accessed 23 July, 2024].
  30. Munir, A., Aved, A., & Blasch, E. (2022). Situational awareness: Techniques, challenges, and prospects. AI, 3(1), pp. 55–77. doi: 10.3390/ai3010005
  31. Naik, B. T., & Hashmi, M. F. (2023). YOLOv3-SORT: Detection and tracking player/ball in soccer sport. Journal of Electronic Imaging, 32(1), pp. 011003–011003. doi: 10.1117/1.JEI.32.1.011003
  32. Nguyen, P. T., Westerlund, T., & Peña Queralta, J. (2023). Vision-based safe autonomous UAV docking with panoramic sensors. Frontiers in Robotics and AI, 10, p. 1223157. doi: 10.3389/frobt.2023.1223157
  33. OpenCV Tracker API. (2023). Available at https://docs.opencv.org/4.7.0/dc/d6b/group__tracking__legacy.html [accessed 8 June, 2023].
  34. Picam360 Developer Community, P. I. (2023). PICAM360. Available at https://store.picam360.com/store#!/PICAM360-4KHDR/p/144496447/category=0 [accessed 8 June, 2023].
  35. Premachandra, C., Ueda, S., & Suzuki, Y. (2020). Detection and tracking of moving objects at road intersections using a 360-degree camera for driver assistance and automated driving. 8, pp. 135652–135660. doi: 10.1109/ACCESS.2020.3011430
  36. Qiu, Z., Wang, S., Zeng, Z., & Yu, D. (2019). Automatic visual defects inspection of wind turbine blades via YOLO-based small object detection approach. Journal of Electronic Imaging, 28(4), pp. 043023–043023. doi: 10.1117/1.JEI.28.4.043023
  37. Rankin, D. (2020). Unwrap. Available at https://github.com/rankinstudio/unWrap [accessed 7 March, 2025].
  38. Rashed, H., Mohamed, E., Sistu, G., Kumar, V. R., Eising, C., & El-Sallab, A., et al. (2021). Generalized object detection on fisheye cameras for autonomous driving: Dataset, representations and baseline. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. IEEE, pp. 2272–2280.
  39. Ren, S., He, K., Girshick, R. B., & Sun, J. (2016). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, IEEE. doi: 10.1109/TPAMI.2016.2577031.
  40. Scharre, P. D. (2015). The opportunity and challenge of autonomous systems. Autonomous Systems: Issues for Defence Policymakers. HQ Sact, pp. 3–26.
  41. Schueler, K., Weiherer, T., Bouzouraa, E., & Hofmann, U. (2012). 360 degree multi sensor fusion for static and dynamic obstacles. In: 2012 IEEE Intelligent Vehicles Symposium. IEEE, pp. 692–697.
  42. Sejal, A. (2022). Unmanned Ground Vehicle Market Size, Share, Analysis, Trends – alliedmarketresearch.com. Available at https://www.alliedmarketresearch.com/unmanned-ground-vehicle-UGV-market [accessed 23 July, 2024].
  43. Shmigel, P. (2023). Ukraine to Deploy Robots against Russian Troops – kyivpost.com . Available at https://www.kyivpost.com/post/20181 [accessed 23 July, 2024].
    ShmigelP. 2023 Ukraine to Deploy Robots against Russian Troops – kyivpost.com Available at https://www.kyivpost.com/post/20181 [accessed 23 July, 2024]
  44. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), pp. 1–48. doi: 10.1186/s40537-019-0197-0
  45. Sutton, H. I. (2023). World’s First Specialized Explosive Naval Drone Unit Formed in Ukraine – Naval News – navalnews.com. Available at https://www.navalnews.com/naval-news/2023/08/worlds-first-specialized-explosive-naval-drone-unit-formed-in-ukraine/ [accessed 22 July, 2024].
  46. Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, PMLR. doi: 10.48550/arXiv.1905.11946.
  47. Tan, M., Pang, R., & Le, Q. V. (2019). EfficientDet: Scalable and efficient object detection. In: Conference on Neural Information Processing Systems.
  48. Vijayakumar, A., & Vairavasundaram, S. (2024). YOLO-based object detection models: A review and its applications. Multimedia Tools and Applications, 83(35), pp. 83535–83574. doi: 10.1007/s11042-024-18872-y
  49. Wang, K. H., & Lai, S. H. (2019). Object detection in curved space for 360-degree camera. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. doi: 10.1109/ICASSP.2019.8683093, pp. 3642–3646.
  50. Wolf, M. T., Assad, C., Kuwata, Y., Howard, A., Aghazarian, H., Zhu, D., et al. (2010). 360-degree visual detection and target tracking on an autonomous surface vehicle. Journal of Field Robotics, 27(6), pp. 819–833. doi: 10.1002/rob.20371
  51. Xu, Y., Fu, M., Wang, Q., Wang, Y., Chen, K., Xia, G.-S., et al. (2020). Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4), pp. 1452–1459. doi: 10.1109/TPAMI.2020.2974745
  52. Yang, W., Qian, Y., Kämäräinen, J.-K., Cricri, F., & Fan, L. (2018). Object detection in equirectangular panorama. In: 2018 24th International Conference on Pattern Recognition (ICPR), IEEE. doi: 10.48550/arXiv.1805.08009, pp. 2190–2195.
  53. Yang, Y., Tang, D., Wang, D., Song, W., Wang, J., & Fu, M. (2020). Multi-camera visual SLAM for off-road navigation. Robotics and Autonomous Systems, 128, p. 103505. doi: 10.1016/j.robot.2020.103505
  54. Yeong, D. J., Velasco-Hernandez, G., Barry, J., & Walsh, J. (2021). Sensor and sensor fusion technology in autonomous vehicles: A review. Sensors, 21(6), p. 2140. doi: 10.3390/s21062140
  55. Zelioli, L. (2024). Leveraging machine learning for maritime object detection and peatland classification, Doctoral dissertation. University of Turku.
  56. Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2022). Machine learning testing: Survey, landscapes and horizons. IEEE Transactions on Software Engineering, 48(1), pp. 1–36. doi: 10.1109/TSE.2019.2962027
  57. Zhang, X., Dong, X., Wei, Q., & Zhou, K. (2019). Real-time object detection algorithm based on improved YOLOv3. Journal of Electronic Imaging, 28(5), pp. 053022–053022. doi: 10.1117/1.JEI.28.5.053022
  58. Zhang, Y., Xiao, X., & Yang, X. (2017). Real-time object detection for 360-degree panoramic image using cnn. In: 2017 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, pp. 18–23.
DOI: https://doi.org/10.2478/jms-2025-0007 | Journal eISSN: 1799-3350 | Journal ISSN: 2242-3524
Language: English
Submitted on: Apr 30, 2025
Accepted on: Aug 24, 2025
Published on: Oct 15, 2025
Published by: National Defense University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Adrian Borzyszkowski, Christian Andersson, Luca Zelioli, Paavo Nevalainen, Jukka Heikkonen, published by National Defense University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

AHEAD OF PRINT