Have a personal or library account? Click to login
Novel framework for dyslexia diagnosis in children in Al Kharj region with super-resolution generative adversarial network and transfer learning technique
J. Sanfilippo, M. Ness, Y. Petscher, L. Rappaport, B. Zuckerman, and N. Gaab, ‘Reintroducing Dyslexia: Early Identification and Implications for Pediatric Practice’, Pediatrics, vol. 146, no. 1, p. e20193046, Jul. 2020, doi: 10.1542/peds.2019-3046.
E. Eltyeb et al., “Dyslexia in Primary Schools’ Children: A Study to Explore Saudi Teachers Knowledge and Attitudes in the Jazan Region,” Hail Journal of Health Sciences, vol. 6, no.2, pp. 98–103, 2024.
R. K. Wagner et al., “The Prevalence of Dyslexia: A New Approach to its Estimation,” J. Learn. Disabil., vol. 53, no. 5, pp. 354–365, 2020, doi: 10.1177/0022219420920377.
H. Kizilkaya and H. Sari, “Evaluating the Effectiveness of Training Program Developed for Teachers Working with Dyslexic Students on their Competencies,” Asian J. Educ. Train., vol. 7, pp. 126–135, Jan. 2021, doi: 10.20448/journal.522.2021.72.126.135.
A. Frid and L. M. Manevitz, “Features and Machine Learning for Correlating and Classifying between Brain Areas and Dyslexia,” p. 8. http://www.biosemi.com/
Z. Rezvani et al., “Machine learning Classification of Dyslexic Children based on EEG Local Network Features,” Mar. 13, 2019, bioRxiv. doi: 10.1101/569996.
M. N. Benfatto, G. Ö. Seimyr, J. Ygge, T. Pansell, A. Rydberg, and C. Jacobson, “Screening for Dyslexia Using Eye Tracking during Reading,” PLOS ONE, vol. 11, no. 12, p. e0165508, Dec. 2016, doi: 10.1371/journal.pone.0165508.
I. Isa, W. Rahimi, S. A. Ramlan, and S. Sulaiman, “Automated Detection of Dyslexia Symptom Based on Handwriting Image for Primary School Children,” Procedia Comput. Sci., vol. 163, pp. 440–449, Jan. 2019, doi: 10.1016/j.procs.2019.12.127.
H. W. Liu, S. Wang, and S. X. Tong, “DysDiTect: Dyslexia Identification Using CNN-Positional-LSTM-Attention Modeling with Chinese Dictation Task,” Brain Sci., vol. 14, no. 5, Art. no. 5, May 2024, doi: 10.3390/brainsci14050444.
I. H. Sarker, “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions,” SN Comput. Sci., vol. 2, no. 6, p. 420, Aug. 2021, doi: 10.1007/s42979-021-00815-1.
A. Hosna, E. Merry, J. Gyalmo, Z. Alom, Z. Aung, and M. A. Azim, “Transfer learning: a friendly introduction,” J. Big Data, vol. 9, no. 1, p. 102, Oct. 2022, doi: 10.1186/s40537-022-00652-w.
R. Ribani and M. Marengoni, “A Survey of Transfer Learning for Convolutional Neural Networks,” in 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), Oct. 2019, pp. 47–57. doi: 10.1109/SIBGRAPI-T.2019.00010.
Y. Gong, G. Liu, Y. Xue, R. Li, L. Meng, “A survey on dataset quality in machine learning,” Inf. Softw. Technol., vol. 162, p. 107268, Oct. 2023, doi: 10.1016/j.infsof.2023.107268.
G. Aldehim, M. Rashid, A. S. Alluhaidan, S. B. Sakri, and S. Basheer, “Deep Learning for Dyslexia Detection: A Comprehensive CNN Approach with Handwriting Analysis and Benchmark Comparisons,” J. Disabil. Res., vol. 3, p. 20240010, Feb. 2024, doi: 10.57197/JDR-2024-0010.
C. Tian, X. Zhang, J. C.-W. Lin, W. Zuo, Y. Zhang, and C.W. Lin, “Generative Adversarial Networks for Image Super-Resolution: A Survey,” Oct. 03, 2022, arXiv: arXiv:2204.13620. Accessed: Jul. 06, 2024. [Online]. Available: http://arxiv.org/abs/2204.13620
Chakraborty, D. “Super-Resolution Generative Adversarial Networks (SRGAN),” PyImageSearch, P. Chugh, A. R. Gosthipaty, S. Huot, K. Kidriavsteva, R. Raha, and A. Thanki, eds., 2022
R. S. Thakur, R. N. Yadav, and L. Gupta, “PReLU and edge-aware filter-based image denoiser using convolutional neural network,” IET Image Process., vol. 14, no. 15, pp. 3869–3879, 2020, doi: 10.1049/iet-ipr.2020.0717.
W. Ahmad, H. Ali, Z. Shah, and S. Azmat, “A new generative adversarial network for medical images super resolution,” Sci. Rep., vol. 12, no. 1, p. 9533, Jun. 2022, doi: 10.1038/s41598-022-13658-4.
R. Maharaj, V. Balyan, Khan, M.T. Khan “Optimising data visualisation in the process control and IIoT environments,” International Journal on Smart Sensing and Intelligent Systems., vol. 15, p.1–14. 2022, 10.21307/ijssis-2021-022.
S. F. Ahmed et al., “Deep learning modelling techniques: current progress, applications, advantages, and challenges,” Artif. Intell. Rev., vol. 56, no. 11, pp. 13521–13617, Nov. 2023, doi: 10.1007/s10462-023-10466-8.
A. Hosna, E. Merry, J. Gyalmo, Z. Alom, Z. Aung, and M. A. Azim, “Transfer learning: a friendly introduction,” J. Big Data, vol. 9, no. 1, p. 102, Oct. 2022, doi: 10.1186/s40537-022-00652-w.
M. Ghafoorian et al., “Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation,” vol. 10435, 2017, pp. 516–524. doi: 10.1007/978-3-319-66179-7_59.
S. R. Ziyad, E. Aljohani, and I. A. Saeed, “Diagnosis of Autism Spectrum Disorder by Imperialistic Competitive Algorithm and Logistic Regression Classifier,” Comput. Mater. Contin., vol. 77, no. 2, Jan. 2023.