Have a personal or library account? Click to login
Effect of exogenous γ-aminobutyric acid (GABA) and nutrients on growth and quality of Glechoma longituba (Nakai) Kupr Cover

Effect of exogenous γ-aminobutyric acid (GABA) and nutrients on growth and quality of Glechoma longituba (Nakai) Kupr

Open Access
|Nov 2025

References

  1. Ahad, B., Shahri, W., Rasool, H., Reshi, Z. A., Rasool, S., and Hussain, T. (2021). Medicinal plants and herbal drugs: An overview. In T. Aftab and K. R. Hakeem (Eds.), Medicinal and aromatic plants (pp. 1–40). Switzerland, Cham: Springer, https://doi.org/10.1007/978-3-030-58975-2_1.
  2. Ahirwar, R. K. (2023). An overview of medicinal plants: Drugs of tomorrow. In D. Singh, A. K. Mishra and A. K. Srivastava (Eds.), Stress-responsive factors and molecular farming in medicinal plants. Singapore: Springer, 1–16, https://doi.org/10.1007/978-981-99-4480-4_1.
  3. Ahmadi, F., Samadi, A., and Rahimi, A. (2020). Improving growth properties and phytochemical compounds of Echinacea purpurea (L.) medicinal plant using novel nitrogen slow release fertilizer under greenhouse conditions. Scientific Reports, 10(1), 13842, https://doi.org/10.1038/s41598-020-70949-4.
  4. Akram, M., Laila, U., Ephraim-Emmanuel, B. C., and Egbuna, C. (2021). Roles of nutraceutical in the treatment of tuberculosis. In C. Egbuna, A. P. Mishra and M. R. Goyal (Eds.), Preparation of phytopharmaceuticals for the management of disorders (Chap. 13, pp. 273–279). Academic Press, London, UK, https://doi.org/10.1016/B978-0-12-820284-5.00003-4.
  5. Bashir, R., Riaz, H. N., Anwar, S., Parveen, N., Khalilzadeh, R., Hussain, I., and Mahmood, S. (2021). Morpho-physiological changes in carrots by foliar γ-aminobutyric acid under drought stress. Brazilian Journal of Botany, 44, 57–68, https://doi.org/10.1007/s40415-020-00676-7.
  6. Chu, Y., Yu, F. H., and Dong, M. (2006). Clonal plasticity in response to reciprocal patchiness of light and nutrients in the stoloniferous herb Glechoma longituba L. Journal of Integrative Plant Biology, 48(4), 400–408, https://doi.org/10.1111/j.1744-7909.2006.00237.x.
  7. Gao, J. F. (2006). Experimental guidance of plant physiology (pp. 142–144). Higher Education Press.
  8. Guo, Z., Du, N., Li, Y., Zheng, S., Shen, S., and Piao, F. (2020). Gamma-aminobutyric acid enhances tolerance to iron deficiency by stimulating auxin signaling in cucumber (Cucumis sativus L.). Ecotoxicology and Environmental Safety, 192, 110285, https://doi.org/10.1016/j.ecoenv.2020.110285.
  9. Guo, Z. J., Gong, J. Q., Luo, S. T., Zuo, Y. X., and Shen, Y. B. (2023). Role of gamma-aminobutyric acid in plant defense response. Metabolites, 13 (6), 741, https://doi.org/10.3390/metabo13060741.
  10. Gu, M., Yang, J., Tian, X., Fang, W., Xu, J., and Yin, Y. (2022). Enhanced total flavonoid accumulation and alleviated growth inhibition of germinating soybeans by GABA under UV-B stress. RSC Advances, 12(11), 6619–6630, https://doi.org/10.1039/d2ra00523a.
  11. Hosseinzadeh, S., Jafarikukhdan, A., Hosseini, A., and Armand, R. (2015). The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris. International Journal of Clinical Medicine, 6, 635–642, https://doi.org/10.4236/ijcm.2015.69084.
  12. Houghton, P. J. (1995). The role of plants in traditional medicine and current therapy. Journal of Alternative and Complementary Medicine, 1(2), 131, https://doi.org/10.1089/acm.1995.1.131.
  13. Hu, Y. X., Huang, X., Xiao, Q. L., Wu, X., Tian, Q., Ma, W. Y., Shoaib, N., Liu, Y. J., Zhao, H., Feng, Z. Y., and Yu, G. W. (2024). Advances in plant Gaba research: Biological functions, synthesis mechanisms and regulatory pathways. Plants, 13(20), 2891, https://doi.org/10.3390/plants13202891.
  14. Jalil, S. U., Khan, M. I. R., and Ansari, M. I. (2019). Role of GABA transaminase in the regulation of development and senescence in Arabidopsis thaliana. Current Plant Biology, 19, 100119, https://doi.org/10.1016/j.cpb.2019.100119.
  15. Jin, L., Liu, L., Guo, Q., Wang, L., and Zou, J. (2018). Variation in bioactive compounds of Glechoma longituba and its influential factors: Implication for advanced cultivation strategies. Scientia Horticulturae, 244, 182–192, https://doi.org/10.1016/j.scienta.2018.09.047.
  16. Jin, Y., Zhi, L., Tang, X., Chen, Y., Hancock, J. T., and Hu, X. (2023). The function of GABA in plant cell growth, development and stress response. Phyton-International Journal of Experimental Botany, 92(8), 2211–2225, https://doi.org/10.32604/phyton.2023.026595.
  17. Kabała, K., and Janicka, M. (2024). Relationship between the GABA pathway and signaling of other regulatory molecules. International Journal of Molecular Sciences, 25(19), 10749, https://doi.org/10.3390/ijms251910749.
  18. Kumar, A., Shukla, R., Singh, P., Prasad, C. S., and Dubey, N. K. (2008). Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities. Innovative Food Science and Emerging Technologies, 9(4), 575–580, https://doi.org/10.1016/j.ifset.2007.12.005.
  19. Li, Y., Liu, B., Peng, Y., Liu, C., Zhang, X., Zhang, Z., Liang, W., Ma, F., and Li, C. (2020). Exogenous GABA alleviates alkaline stress in Malus hupehensis by regulating the accumulation of organic acids. Scientia Horticulturae, 261, 108982, https://doi.org/10.1016j.scienta.2019.108982.
  20. Liang, Q., Li, X., Zhou, W., Su, Y., He, S., Cheng, S., Lu, J., Cao, W., Yan, Y., Pei, X., Qi, J., Xu, G., and Yue, Z. (2016). An explanation of the underlying mechanisms for the in vitro and in vivo antiurolithic activity of Glechoma longituba. Oxidative Medicine and Cellular Longevity, 2016(1), 3134919, https://doi.org/10.1155/2016/3134919.
  21. Liu, J., Li, C. C., Ding, G. J., and Quan, W. X. (2021). Artificial intelligence assisted ultrasonic extraction of total flavonoids from Rosa sterilis. Molecules (Basel, Switzerland), 26(13), 3835, https://doi.org/10.3390/molecules26133835.
  22. Liu, M., Gao, J., Wang, N., Yan, Y., Zhang, G., Chen, Y., and Zhang, M. (2024). Effects of exogenous gaba on physiological characteristics of licorice seedlings under saline-alkali stress. Plant Stress, 11, 100364, https://doi.org/10.1016/j.stress.2024.100364.
  23. Lv, G., Li, Z., Zhao, Z., Liu, H., Li, L., and Li, M. (2024). The factors affecting the development of medicinal plants from a value chain perspective. Planta: An International Journal of Plant Biology, 259(5), 108, https://doi.org/10.1007/s00425-024-04380-8.
  24. Marrelli, M. (2021). Medicinal plants. Plants (Basel, Switzerland), 10(7), 1355, https://doi.org/10.3390/plants10071355.
  25. Miransari, M., Adham, S., Miransari, M., and Miransari, A. A. (2025). The effects of nutrients on the growth and quality of medicinal and aromatic plants, affecting athletic abilities. Journal of Trace Elements and Minerals, 11, 100205, https://doi.org/10.1016/j.jtemin.2024.100205.
  26. Murthy, H. N., Dandin, V. S., Zhong, J. J., and Paek, K. Y. (2014). Strategies for enhanced production of plant secondary metabolites from cell and organ cultures. In K. Y. Paek, H. Murthy and J. J. Zhong (Eds.), Production of biomass and bioactive compounds using bioreactor technology. Dordrecht, Netherlands: Springer, 471–508, https://doi.org/10.1007/978-94-017-9223-3_20.
  27. Naik, P. M., Manohar, S. H., and Murthy, H. N. (2011). Effects of macro elements and nitrogen source on biomass accumulation and bacoside a production from adventitious shoot cultures of Bacopa monnieri (L.). Acta Physiologiae Plantarum, 33(4), 1553–1557, https://doi.org/10.1007/s11738-010-0675-7.
  28. Ncube, B., Finnie, J. F., and Staden Van, J. (2012). Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany, 82, 11–20, https://doi.org/10.1016/j.sajb.2012.05.009.
  29. Oladeji, O. (2016). The characteristics and roles of medicinal plants: Some important medicinal plants in Nigeria. Natural Products: An Indian Journal, 12(3), 102.
  30. Oteef, M. D. Y. (2022). Comparison of different extraction techniques and conditions for optimizing an HPLC-DAD method for the routine determination of the content of chlorogenic acids in green coffee beans. Separations, 9, 396, https://doi.org/10.3390/separations9120396.
  31. Petrovska, B. B. (2012). Historical review of medicinal plants’ usage. Pharmacognosy Reviews, 6(11), 1–5, https://doi.org/10.4103/0973-7847.95849.
  32. Ramos-Ruiz, R., Martinez, F., and Knauf-Beiter, G. (2019). The effects of GABA in plants. Cogent Food and Agriculture, 5 (1), 1–12, https://doi.org/10.1080/23311932.2019.1670553.
  33. Ramos-Ruiz, R., Poirot, E., and Flores-Mosquera, M. (2018). GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food and Agriculture, 4(1), 1–89, https://doi.org/10.1080/23311932.2018.1534323.
  34. Roy, A., Khan, A., Ahmad, I., Alghamdi, S., Rajab, B. S., Babalghith, A. O., Alshahrani, M. Y., Islam, S., and Islam, M. R. (2022). Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Research International, 2022, 5445291, https://doi.org/10.1155/2022/5445291.
  35. Shahrajabian, M. H., Sun, W. L., and Cheng, Q. (2022). Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1–10, https://doi.org/10.1186/s43088-022-00210-6.
  36. Shan, Q. Y., Cao, G., Cai, H., and Cai, B. C. (2013). Simultaneous determination of four bioactive compounds in Glechoma longituba extracts by high performance liquid chromatography. Pharmacognosy Magazine, 9(35), 216, https://doi.org/10.4103/0973-1296.113269.
  37. Shelp, B. J., Mullen, R. T., and Waller, J. C. (2012). Compartmentation of GABA metabolism raises intriguing questions. Trends in Plant Science, 17 (2), 57–59, https://doi.org/10.1016j.tplants.2011.12.006.
  38. Sile, I., Krizhanovska, V., Nakurte, I., Mezaka, I., Kalane, L., Filipovs, J., Vecvanags, A., Pugovics, O., Grinberga, S., Dambrova, M., and Kronberga, A. (2022). Wild-grown and cultivated Glechoma hederacea L.: Chemical composition and potential for cultivation in organic farming conditions. Plants, 11 (6), 819, https://doi.org/10.3390/plants11060819.
  39. Silveira Rabelo, A. C., and Caldeira Costa, D. (2018). A review of biological and pharmacological activities of Baccharis trimera. Chemico-Biological Interactions, 296, 65–75, https://doi.org/10.1016/j.cbi.2018.09.002.
  40. Sofowora, A., Ogunbodede, E., and Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary, and Alternative Medicines, 10(5), 210–229, https://doi.org/10.4314/ajtcam.v10i5.2.
  41. Stuper-Szablewska, K., Szablewski, T., Przybyiska-Balcerek, A., Szwajkowska-Michałek, L., Krzyżaniak, M., Świerk, D., Cegielska-Radziejewska, R., and Krejpcio, Z. (2022). Antimicrobial activities evaluation and phytochemical screening of some selected plant materials used in traditional medicine. Molecules (Basel, Switzerland), 28(1), 244, https://doi.org/10.3390/molecules28010244.
  42. Tafreshi, Y. M., Eghlima, G., Hatami, M., and Vafadar, M. (2025). Exploring the potential impact of salicylic acid and jasmonic acid in promoting seed oil content, vitamin c and antioxidant activity in rosehip (Rosa canina L.). BMC Plant Biology, 25(1), 1–13, https://doi.org/10.1186/s12870-025-06251-0.
  43. Theodoridis, S., Drakou, E. G., Hickler, T., Thines, M., and Nogues-Bravo, D. (2023). Evaluating natural medicinal resources and their exposure to global change. Lancet Planetary Health, 7(2), 155–163, https://doi.org/10.1016/S2542-5196(22)00317-5.
  44. Wang, D., Song, F., Zhou, Y., Zhong, T., Zhang, Y., Deng, Q., Wang, X., Wang, S., Wang, D., Zhu, X., Jiang, N., and Liu, X. (2024a). Effects of alkaline salt stress on growth, physiological properties and medicinal components of clonal Glechoma longituba (Nakai) Kupr. BMC Plant Biology, 24, 965, https://doi.org/10.1186/s12870-024-05668-3.
  45. Wang, T., Gu, X., Guo, L., Zhang, X., and Li, C. (2024b). Integrated metabolomics and transcriptomics analysis reveals γ-aminobutyric acid enhances the ozone tolerance of wheat by accumulation of flavonoids. Journal of Hazardous Materials, 465, 133202, https://doi.org/10.1016/j.jhazmat.2023.133202.
  46. Xie, T., Ji, J., Chen, W., Yue, J., Du, C., Sun, J., Chen, L., Jiang, Z., and Shi, S. (2019). γ-aminobutyric acid is closely associated with accumulation of flavonoids. Plant Signaling & Behavior, 14(7), 1604015, https://doi.org/10.1080/15592324.2019.1604015.
  47. Yang, L., Zhang, J., Zheng, S., Hou, A., Wang, S., Yu, H., Wang, X., Xu, Y., Kuang, H., and Jiang, H. (2021). The phytochemistry, pharmacology and traditional medicinal use of Glechomae Herba – A systematic review. RSC Advances, 11(31), 19221–19237, https://doi.org/10.1039/D1RA01366A.
  48. Yang, Z., Xu, Y., Song, P., Li, X., Zhou, J., Lin, L., Xia, H., Liang, D., Luo, X., Zhang, H., Deng, Q., and Wang, Y. (2023). Effects of gamma amino butyric acid (gaba) on nutrient uptake of loquat [Eriobotrya japonica (Thunb.) Lindl.] seedlings. Horticulturae, 9(2), 196, https://doi.org/10.3390/horticulturae9020196.
  49. Yuan, Z. L., Chen, X. B., Cai, J., Huang, L. Y., Guo, S. H., and Ouyang, X. L. (2023). Polyphenols and organic acids from Glechoma longituba. Chemistry of Natural Compounds, 59(3), 562–564, https://doi.org/10.1007/s10600-023-04053-0.
  50. Zarbakhsh, S., and Shahsavar, A. R. (2023). Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses. BMC Plant Biology, 23(1), 543, https://doi.org/10.1186/s12870-023-04568-2.
  51. Zhang, L. L., Dong, M., Li, R. Q., Wang, Y. H., Cui, Q. G., and He, W. M. (2007). Soil-nutrient patch contrast modifies intensity and direction of clonal integration in Glechoma longituba. Journal of Plant Ecology, 31, 619–624, https://doi.org/10.17521/cjpe.2007.0079.
  52. Zhang, L. L., and He, W. M. (2008). Nutrient-patch contrast in relation to clonal integration, with special reference to Glechoma longituba. Journal of Plant Ecology, 1, 75–77, https://doi.org/10.1093/jpe/rtn004.
  53. Zhang, L. L., and He, W. M. (2009). Spatial covariance in resources affects photosynthetic rate and water potential, but not the growth of Glechoma longituba fragments. Flora, 204, 628–634, https://doi.org/10.1016/j.flora.2008.09.003.
  54. Zhang, Q., Lu, M., Liu, T., Zheng, X., Chen, T., Yang, L., Ding, L., Yang, Y., Han, Z., Gu, L., and Wang, Z. (2024). Glechomenes A-G, diterpenoids with anti-inflammatory activities from the aerial part of Glechoma longituba. Fitoterapia, 176, 106034, https://doi.org/10.1016/j.fitote.2024.106034.
  55. Zhang, R., Chen, Z. H., Li, Y. M., Wang, N., Cui, W. T., Zhao, B. N., and Si, C. (2023). Effects of clonal integration and nutrient availability on the growth of Glechoma longituba under heterogenous light conditions. Frontiers in Plant Science, 14, 1182068, https://doi.org/10.3389/fpls.2023.1182068.
  56. Zhou, Y., He, Y. J., Wang, Z. J., Hu, B. Y., Xie, T. Z., Xiao, X., Zhou, Z. S., Sang, X. Y., and Luo, X. D. (2021). A review of plant characteristics, phytochemistry and bioactivities of the genus Glechoma. Journal of Ethnopharmacology, 271, 113830, https://doi.org/10.1016j.jep.2021.113830.
DOI: https://doi.org/10.2478/fhort-2025-0019 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 257 - 267
Submitted on: May 26, 2025
Accepted on: Sep 15, 2025
Published on: Nov 26, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Rui Zhang, Zi-Yang Xie, Bing-Nan Zhao, Mei-Juan Jin, Xiao-Ran Chen, Jia-Ning Liu, Xin-Xin Wang, Jia-Yi Li, Yan-Hui Wei, Chao Si, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.