Have a personal or library account? Click to login
Enhancing essential oil production in rosemary (Rosmarinus officinalis L.) with salicylic acid and methyl jasmonate and its relationship to spectral indices Cover

Enhancing essential oil production in rosemary (Rosmarinus officinalis L.) with salicylic acid and methyl jasmonate and its relationship to spectral indices

Open Access
|Mar 2025

References

  1. Ahmed, A. F., and Shehata, A. M. (2023). Improving growth, yield and oil productivity of rosemary plants grown in sandy calcareous soil by using some manures organic tea and salicylic acid. Journal of Plant Production, 14(10), 479–487, https://doi.org/10.21608/jpp.2023.234844.1269.
  2. Alavi-Samani, S. M., Kachouei, M. A., and Pirbalouti, A. G. (2015). Growth, yield, chemical composition, and antioxidant activity of essential oils from two thyme species under foliar application of jasmonic acid and water deficit conditions. Horticulture, Environment, and Biotechnology, 56(4), 411–420, https://doi.org/10.1007/s13580-015-0117-y.
  3. Asensi-Fabado, M. A., Oliván, A., and Munné-Bosch, S. (2013). A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environmental and Experimental Botany, 94, 57–65, https://doi.org/10.1016/j.envexpbot.2012.05.001.
  4. Aziz, E., Batool, R., Akhtar, W., Shahzad, T., Malik, A., Shah, M. A., Iqbal, S., Rauf, A., Zengin, G., Bouyahya, A., Rebezov, M., Dutta, N., Khan, M. U., Khayrullin, M., Babaeva, M., Goncharov, A., Shariati, M. A., and Thiruvengadam, M. (2022). Rosemary species: A review of phytochemicals, bioactivities and industrial applications. South African Journal of Botany, 151, 3–18, https://doi.org/10.1016/j.sajb.2021.09.026.
  5. Bakhtiarizade, M., and Souri, M. K. (2019). Beneficial effects of rosemary, thyme and tarragon essential oils on postharvest decay of Valencia oranges. Chemical and Biological Technologies in Agriculture, 6, 9, https://doi.org/10.1186/s40538-019-0146-3.
  6. Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., and Moran, M. S. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. Paper presented at the 5th International Conference on Precision Agriculture, Madison, WI, USA, 1–15.
  7. Biswal, A. K., Pattanayak, G. K., Pandey, S. S., Leelavathi, S., Reddy, V. S., Govindjee, and Tripathy, B. C. (2012). Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiology, 159(1), 433–449, https://doi.org/10.1104/pp.112.195859.
  8. Blande, J. D., Korjus, M., and Holopainen, J. K. (2010). Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder. Tree Physiology, 30(3), 404–416, https://doi.org/10.1093/treephys/tpp124.
  9. Böszörményi, A., Dobi, A., Skribane, A., Pávai, M., and Solymosi, K. (2020). The effect of light on plastid differentiation, chlorophyll biosynthesis, and essential oil composition in rosemary (Rosmarinus officinalis) leaves and cotyledons. Frontiers in Plant Science, 11, 196, https://doi.org/10.3389/fpls.2020.00196.
  10. Cappellari, L. D. R., Santoro, M. V., Schmidt, A., Gershenzon, J., and Banchio, E. (2019). Induction of essential oil production in Mentha × piperita by plant growth promoting bacteria was correlated with an increase in jasmonate and salicylate levels and a higher density of glandular trichomes. Plant Physiology and Biochemistry, 141, 142–153, https://doi.org/10.1016/j.plaphy.2019.05.030.
  11. Carter, G. A. (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 15, 697–703, https://doi.org/10.1080/01431169408954109.
  12. Eid, A. M., Jaradat, N., Issa, L., Abu-Hasan, A., Salah, N., Dalal, M., Mousa, A., and Zarour, A. (2022). Evaluation of anticancer, antimicrobial, and antioxidant activities of rosemary (Rosmarinus officinalis) essential oil and its Nanoemulgel. European Journal of Integrative Medicine, 55, 102175, https://doi.org/10.1016/j.eujim.2022.102175.
  13. El-Esawi, M. A., Elansary, H. O., El-Shanhorey, N. A., Abdel-Hamid, A. M., Ali, H. M., and Elshikh, M. S. (2017). Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, 8, 716, https://doi.org/10.3389/fphys.2017.00716.
  14. German, T., Mengesha, B., Philiphos, M., and Mekonnen, M. (2016). Rosemary production and utilization. Addis Ababa, Ethiopia: Ethiopian Institute of Agricultural Research.
  15. Ghilavizadeh, A., Masouleh, E. H., Zakerin, H. R., Valadabadi, S. A. R., Sayfzadeh, S., and Yousefi, M. (2019). Influence of salicylic acid on growth, yield and macro-elements absorption of fennel (Foeniculum vulgare Mill.) under water stress. Journal of Medicinal Plants and By-products, 8, 57–75, https://doi.org/10.22092/jmpb.2019.119386.
  16. Hesami, S., Nabizadeh, E., Rahimi, A., and Rokhzadi, A. (2012). Effects of salicylic acid levels and irrigation intervals on growth and yield of coriander (Coriandrum sativum) in field conditions. Environmental and Experimental Biology, 10, 113–116.
  17. Hossain, A., Ahmad, Z., Moulik, D., Maitra, S., Bhadra, P., Ahmad, A., Garai, S., Mondal, M., Roy, A., Sabagh, A. E. L., and Aftab, T. (2021). Jasmonates and salicylates: Mechanisms, transport and signalling during abiotic stress in plants. In T. Aftab and M. Yusuf (Eds), Jasmonates and Salicylates Signaling in Plants (pp. 1–29). New York, USA: Springer International Publishing.
  18. Huang, H., Liu, B., Liu, L., and Song, S. (2017). Jasmonate action in plant growth and development. Journal of Experimental Botany, 68(6), 1349–1359, https://doi.org/10.1093/jxb/erw495.
  19. Jin, H., Li, M., Duan, S., Fu, M., Dong, X., Liu, B., Feng, D., Wang, J., and Wang, H. (2016). Optimization of light-harvesting pigment improves photosynthetic efficiency. Plant Physiology, 172(3), 1720–1731, https://doi.org/10.1104/pp.16.00698.
  20. Kaewkrom, P., Thummikkaphong, S., and Somnoumtad, T. (2007). Population ecology of some important palm species in Phetchabun province. Kasetsart Journal (Natural Science), 41, 407–413.
  21. Khan, S., Abdullah, A. A. A., Shu, Y., Zhang, Z., and Liang, T. (2024). The extraction and impact of essential oils on bioactive films and food preservation, with emphasis on antioxidant and antibacterial activities – A review. Foods, 13(18), 2963, https://doi.org/10.3390/foods13182963.
  22. Kianersi, F., Pour-Aboughadareh, A., Majdi, M., and Poczai, P. (2021). Effect of methyl jasmonate on thymol, carvacrol, phytochemical accumulation, and expression of key genes involved in thymol/carvacrol biosynthetic pathway in some Iranian thyme species. International Journal of Molecular Sciences, 22(20), 11124, https://doi.org/10.3390/ijms222011124.
  23. Koda, Y. (1997). Possible involvement of jasmonates in various morphogenic events. Physiologia Plantarum, 100, 639–646, https://doi.org/10.1111/j.1399-3054.1997.tb03070.x.
  24. Mahfouz, H. M., Barakat, H. M., Halem, A. S., and El-Hahdy, M. M. (2014). Effects of jasmonic and salicylic acids on cell division and cell cycle progression. Egyptian Journal of Botany, 54(2), 185–201, https://doi.org/10.21608/ejbo.2014.487.
  25. Meguro, A., and Sato, Y. (2014). Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice. Scientific Reports, 4, 4555, https://doi.org/10.1038/srep04555.
  26. Melese, A. A., Abebe, G., Befa, A., Moges, G., and Degu, B. (2023). Effect of harvesting age and drying methods on essential oil yield of rosemary (Rosmarinus officinalis L.) leaves in Wondo Genet, Ethiopia. Thai Journal of Agricultural Science, 56(2), 102–114.
  27. Moreira-Rodríguez, M., Nair, V., Benavides, J., Cisneros-Zevallos, L., and Jacobo-Velázquez, D. A. (2017). UVA, UVB light, and methyl jasmonate, alone or combined, redirect the biosynthesis of glucosinolates, phenolics, carotenoids, and chlorophylls in broccoli sprouts. International Journal of Molecular Sciences, 18(11), 2330, https://doi.org/10.3390/ijms18112330.
  28. Murchie, E. H., and Lawson, T. (2013). Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983–3998, https://doi.org/10.1093/jxb/ert208.
  29. Napoleão, T. A., Soares, G., Vital, C. E., Bastos, C., Castro, R., Loureiro, M. E., and Giordano, A. (2017). Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon. Plant Science, 263, 46–54, https://doi.org/10.1016/j.plantsci.2017.06.014.
  30. Ono, K., Kazama, S., and Ekkawatpanit, C. (2014). Assessment of rainfall-induced shallow landslides in Phetchabun and Krabi provinces, Thailand. Natural Hazards, 74, 2089–2107, https://doi.org/10.1007/s11069-014-1292-3.
  31. Ouaddari, A. E., Amrani, A. E., Eddine, J. J., and Cayuela-Sánchez, J. A. (2022). Rapid prediction of essential oils major components by Vis/NIRS models using compositional methods. Results in Chemistry, 4, 100562, https://doi.org/10.1016/j. rechem.2022.100562.
  32. Pan, J., Sharif, R., Xu, X., and Chen, X. (2021). Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Frontiers in Plant Science, 11, 627331, https://doi.org/10.3389/fpls.2020.627331.
  33. Pandita, D. (2022). Jasmonates: Key players in plant stress tolerance. In M. Naeem and T. Aftab (Eds.), Emerging plant growth regulators in agriculture. Roles in stress tolerance (pp. 165–192). London, UK: Academic Press.
  34. Peñuelas, J., Baret, F., and Filella, I. (1995). Semiempirical indices to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica, 31(2), 221–230.
  35. Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., and Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sensing of Environment, 48(2), 135–146, https://doi.org/10.1016/0034-4257(94)90136-8.
  36. Peter, K. V., and Shylaja, M. R. (2012). Introduction to herbs and spices: Definitions, trade and applications. In K. V. Peter (Ed.), Handbook of herbs and spices (pp. 1–24). Pennsylvania, USA: Woodhead Publishing Limited.
  37. Pirbalouti, A. G., Nekoei, M., Rahimmalek, M., and Malekpoor, F. (2019). Chemical composition and yield of essential oil from lemon balm (Melissa officinalis L.) under foliar applications of jasmonic and salicylic acids. Biocatalysis and Agricultural Biotechnology, 19, 101144, https://doi.org/10.1016/j.bcab.2019.101144.
  38. Poonam, S., Kaur, H., and Geetika, S. (2013). Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp. seedlings under copper stress. American Journal of Plant Sciences, 4(4), 817–823, https://doi.org/10.4236/ajps.2013.44100.
  39. Porra, R. J., Thompson, W. A. A., and Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta – Bioenergetics, 975(3), 384–394, https://doi.org/10.1016/S0005-2728(89)80347-0.
  40. Rahimi, A. R., Rokhzadi, A., Amini, S., And Karami, E. (2013). Effect of salicylic acid and methyl jasmonate on growth and secondary metabolites in Cuminum cyminum L. Journal of Biodiversity and Environmental Sciences, 3(12), 140–149.
  41. Rosa, A. P., Barão, L., Chambel, L., Cruz, C., and Santana, M. M. (2023). Early identification of plant drought stress responses: Changes in leaf reflectance and plant growth promoting rhizobacteria selection-the case study of tomato plants. Agronomy, 13(1), 183, https://doi.org/10.3390/agronomy13010183.
  42. Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS. Paper presented at the 3rd ERTS-1 Symposium NASA, NASA SP-351, Washington DC, USA, 309–317.
  43. Sabagh, A. E. L., Islam, M. S., Hossain, A., Iqbal, M. A., Mubeen, M., Waleed, M., Reginato, M., Battaglia, M., Ahmed, S., Rehman, A., Arif, M., Athar, H., Ratnasekera, D., Danish, S., Raza, M.A., Rajendran, K., Mushtaq, M., Skalicky, M., Brestic, M., Soufan, W., Fahad, S., Pandey, S., Kamran, M., Datta, R., and Abdelhamid, M. T. (2022). Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy, 4, 765068, https://doi.org/10.3389/fagro.2022.765068.
  44. Samarina, L., Malyukova, L., Koninskaya, N., Malyarovskaya, V., Ryndin, A., Tong, W., Xia, E., and Khlestkina, E. (2024). Efficient vegetation indices for phenotyping of abiotic stress tolerance in tea plant (Camellia sinensis (L.) Kuntze). Heliyon, 10(15), e35522, https://doi.org/10.1016/j.heliyon.2024.e35522.
  45. Sapate, N. M., and Deshmukh, R. R. (2019). Spectral and numerical analysis of hyper spectral data using vegetation indices. International Journal of Engineering and Advanced Technology, 8(6), 2156–2162, https://doi.org/10.35940/ijeat.F8578.088619.
  46. Sasikumar, B. (2012). Rosemary. In K. V. Peter (Ed.), Handbook of Herbs and Spices (pp. 452–468). Sawston, UK: Woodhead Publishing.
  47. Shaukata, K., Zahrab, N., Hafeezc, M. B., Naseerd, R., Batoolb, A., Batoolb, H., Razae, A., and Wahid, A. (2022). Role of salicylic acid–induced abiotic stress tolerance and underlying mechanisms in plants. In M. Naeem and T. Aftab (Eds), Emerging Plant Growth Regulators in Agriculture. Roles in Stress Tolerance (pp. 73–97). London, UK: Academic Press.
  48. Skilbeck, F., Yodmani, S., Komarakul, C., Hemachandra, D., Promathatavedi, M., Rojanasoonthon, S., Vongngamkam, S., Boonthong, S., Nanakorn, W., and Phanvut, W. (2014). Royal Activities and International Cooperation. Bangkok, Thailand: The National Identity Foundation.
  49. Souri, M. K., and Bakhtiarizade, M. (2019). Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Scientia Horticulture, 243, 472–476, https://doi.org/10.1016/j.scienta.2018.08.056.
  50. Souri, M. K., and Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6, 26, https://doi.org/10.1186/s40538-019-0169-9.
  51. Stamford, J. D., Vialet-Chabrand, S., Cameron, I., and Lawson, T. (2023). Development of an accurate low cost NDVI imaging system for assessing plant health. Plant Methods, 19, 9, https://doi.org/10.1186/s13007-023-00981-8.
  52. Tadtong, S., Kamkaen, N., Watthanachaiyingcharoen, R., And Ruangrungsi, N. (2015). Chemical components of four essential oils in aromatherapy recipe. Natural Product Communications, 10(6), 1091–1092, https://doi.org/10.1177/1934578X1501000673.
  53. Talebi, M., Moghaddam, M., And Pirbalouti, A. G. (2018). Methyl jasmonate effects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress. Acta Physiologies Plantarum, 40, 34, https://doi.org/10.1007/s11738-018-2611-1.
  54. Tan, C., Wang, D., Zhou, J., Du, Y., Luo, M., Zhang, Y., and Guo, W. (2018). Assessment of Fv/Fm absorbed by wheat canopies employing in-situ hyperspectral vegetation indexes. Scientific Reports, 8, 9525, https://doi.org/10.1038/s41598-018-27902-3.
  55. Tyagi, P., Singh, A., Gupta, A., Prasad, M., and Ranjan, R. (2022). Mechanism and function of salicylate in plant toward biotic stress tolerance. In M. Naeem and T. Aftab (Eds), Emerging Plant Growth Regulators in Agriculture. Roles in stress tolerance (pp. 131–164). London, UK: Academic Press.
  56. Ustin, S. L., and Jacquemoud, S. (2020). How the optical properties of leaves modify the absorption and scattering of energy and enhance leaf functionality. In J. Cavender-Bares, J. A. Gamon and P. A. Townsend (Eds), Sensing of Plant Biodiversity (pp. 349–384). Cham, Switzerland: Springer.
  57. Wari, D., Aboshi, T., Shinya, T., and Galis, I. (2022). Integrated view of plant metabolic defense with particular focus on chewing herbivores. Journal of Integrative Plant Biology, 64(2), 449–475, https://doi.org/10.1111/jipb.13204
  58. Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313, https://doi.org/10.1016/S0176-1617(11)81192-2.
  59. Yildirim, E., Turan, M., and Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31(3), 593–612, https://doi.org/10.1080/01904160801895118.
  60. Yu, Z., Zhang, G., Da Silva, J. A. T., Zhao, C., and Duan, J. (2021). The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development. Plant Science, 309, 110952, https://doi.org/10.1016/j. plantsci.2021.110952.
  61. Zhao, J., Yang, L., Zhou, L., Bai, Y., Wang, B., Hou, P., Xu, Q., Yang, W., and Zuo, Z. (2016). Inhibitory effects of eucalyptol and limonene on the photosynthetic abilities in Chlorella vulgaris (Chlorophyceae). Phycologia, 55(6), 696–702, https://doi.org/10.2216/16-38.1.
  62. Złotek, U., Michalak-Majewsk, M., and Szymanowska, U. (2016). Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.). Food Chemistry, 213, 1–7, https://doi.org/10.1016/j.foodchem.2016.06.052.
DOI: https://doi.org/10.2478/fhort-2024-0038 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 581 - 594
Submitted on: Nov 7, 2024
Accepted on: Jan 31, 2025
Published on: Mar 11, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Jutiporn Thussagunpanit, Nittaya Chookoh, Wariya Donsri, Teerapat Tepkaew, Amonrat Mayong, Patchareeya Boonkorkaew, Tanee Sreewongchai, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.